This is neither a complete nor thorough answer, but an illustration instead.
Consider the product space $\{0, 1\}^n$ that serves as sample space for the extraction of $n$ i.i.d. Bernoulli r.v.s with parameter $p\in(0, 1)$
$$
P(X_1=x_1, \ldots, X_n=x_n) =
p^{x_1+\ldots+x_n}(1-p)^{n-x_1-\ldots-x_n}
$$
and their transformation into the binomial r.v. $X:=X_1+\ldots+X_n \sim\text{Binom}(n, p)$ with
$$
P(X=x) =
\frac{n!}{x!(n-x)!} p^x (1-p)^{n-x},
$$
which can be written as member of the exponential family in the form
$$
P(X=x) =
\exp\left\{
x \cdot \log\left(\frac{p}{1-p}\right) +
n \log(1-p) +
\log\left(\frac{n!}{x!(n-x)!}\right)
\right\},
$$
which would give $A(p)=n \log(1-p)$ and $h(x)=\log\left(\frac{n!}{x!(n-x)!}\right)$.
In that example, $h(x)$ accounts for the multiplicity of elements $(x_1, \ldots, x_n)$ of $\{0, 1\}^n$ which yield $x_1+\ldots+x_n=x$
$$
h(x) =
\log\left(
\#\{
(x_1, \ldots, x_n)\in\{0, 1\}^n :
x_1+\ldots+x_n=x
\}
\right) =
\log\left(\frac{n!}{x!(n-x)!}\right).
$$