I am going through the paper provided here http://www.cs.cmu.edu/~dgovinda/pdf/recog/EM_algorithm-1.pdf
I could not make out how the following was derived
$\sum_z \mathcal P(\mathbf z|X, \theta_n) \ln \big( \frac{\mathcal P(X| \mathbf z, \theta)\mathcal P(z |\theta)}{\mathcal P(\mathbf z|X, \theta_n)}\big ) - \ln\mathcal P(X|\theta_n)$
=$\sum_z \mathcal P(\mathbf z|X, \theta_n) \ln \big( \frac{\mathcal P(X| \mathbf z, \theta)\mathcal P(z |\theta)}{\mathcal P(\mathbf z|X, \theta_n) \mathcal P(X|\theta_n)}\big ) $
Considering that the left summation in first equation has several terms how is $\ln \mathcal P(X|\theta_n)$ distributed over it?