I'm a maths student, this is my first statics class and I'm studying Confidence Intervals. When it's time to estimate the CI for the mean of $\{X_i\}_{i=1..N}$ - gaussian random variables i.i.d. with unknown standard deviation - we use the estimator $\hat{\sigma}$ to compute the quantity
$$T:=\frac{\overline{X}_N - \mu}{\frac{\hat{\sigma}}{\sqrt{N}}}$$
where $\overline{X}_N$ is the sample mean, $\mu$ the mean and
$$\hat{\sigma}:=\sqrt{\frac{1}{N-1}\sum^N (X_i-\overline{X}_N)^2}$$
I would prove that $T \sim t(N-1)$, so:
$$T=\frac{\sigma}{\sigma} \frac{\overline{X}_N - \mu}{\frac{\hat{\sigma}}{\sqrt{N}}}=\frac{\frac{(\overline{X}_N - \mu)\sqrt{N}}{\sigma}}{\frac{\hat{\sigma}}{\sigma}}$$
Now the numerator is a standard gaussian and I'll call it $\tilde{Z}$. Hence,
$$T=\frac{\tilde{Z}\sqrt{N-1}}{\frac{\hat{\sigma}}{\sigma}\sqrt{N-1}}$$
In order to have a Student t-distribution I have to prove $(\frac{\hat{\sigma}}{\sigma}\sqrt{N-1})^2\sim\chi^2(N-1)$.
Solution:
There's a clear proof of that here.