I am using Firth logistic regression to analyze data with a rare event. In my model I have 4 continuous variables and 1 dichotomous variable. This is my code:
library(logistf)
full1F <- logistf(Stroke~log(v1)+sqrt(v2)+log(v3)+log(v4)+dich_var)
summary(full1F)
exp(cbind(OR=coef(full1F),confint(full1F)))
What statistic should I report to describe model fit (i.e. akin to AIC for GLM models)?
How should I interpret the p-values (i.e.
sqrt(v2)is significant based on the CI, but the p-value is 1.0)?Why is the confidence interval for the dichotomous variable so wide? This is the output:
OR L95% U95% (Intercept) 28.67 5.06 162.5 log(v1) 0.88 0.80 0.97 sqrt(v2) 1.51 1.37 1.69 log(v3) 1.36 1.13 1.64 log(v4) 0.62 0.50 0.76 dich_var 62.76 0.09 167702.4
Full output from logist and extractAIC:
Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood
coef se(coef) lower 0.95 upper 0.95 Chisq p
(Intercept) 4.12807056 2.7584264 2.6061200 5.671118391 1.479713 0.2238194
log(v1) -0.08109114 0.1625829 -0.1744268 0.006705001 0.000000 1.0000000
sqrt(v2) 0.39223967 0.1831892 0.2963022 0.501110156 0.000000 1.0000000
log(v3) 0.31123164 0.3336092 0.1309848 0.502245304 0.000000 1.0000000
log(v4) -0.53354748 0.3718985 -0.7448874 -0.331731496 0.000000 1.0000000
dich_varYes 4.14502663 3.9598211 -3.1206739 12.035651631 Inf 0.0000000
Likelihood ratio test=5.612847 on 5 df, p=0.3457304, n=1714
Wald test = 10.01195 on 5 df, p = 0.07489748
Covariance-Matrix:
[,1] [,2] [,3] [,4] [,5]
[1,] 7.60891623 0.355883900 -0.2358586207 0.107347858 -0.9014000169
[2,] 0.35588390 0.026433207 -0.0139567792 0.006657177 -0.0352398354
[3,] -0.23585862 -0.013956779 0.0335582829 -0.012769583 0.0002785645
[4,] 0.10734786 0.006657177 -0.0127695828 0.111295107 -0.0034625698
[5,] -0.90140002 -0.035239835 0.0002785645 -0.003462570 0.1383084900
[6,] 0.07854902 0.004844901 -0.0121205581 -0.007438953 -0.0037122993
[,6]
[1,] 0.078549017
[2,] 0.004844901
[3,] -0.012120558
[4,] -0.007438953
[5,] -0.003712299
[6,] 15.680183083
extractAIC(full1F)
[1] 5.000000 4.387153
pl=TRUEin yourlogistf(...)call) rather than Wald intervals ... the fact thatlogistfprovides anextractAICmethod suggests that it would be OK to report the AIC ... – Ben Bolker Jun 18 '15 at 22:35brglmimplementation which has the output formatted in the same way asglm. It can also be interpreted in the same way (including information criteria) as the estimator is rather close to the maximum likelihood estimator - just adding some bias reduction. – Achim Zeileis Jun 19 '15 at 00:45