I have two related samples, for which I want to prove they are not significantly different (normally you would test for the opposite, i.e. samples are significantly different).
If I use Wilcoxon signed-rank test, the test results are of course highly insignificant, with p-values greatly above 0.5, sometimes even above 0.9.
So in an ideal world, I would use some sort of inverted Wilcoxon signed-rank test (with negated null hypothesis). But to my knowledge, this kind of test does not exist.
I have also been looking for a way to reject the alternative hypothesis OR accept the null hypothesis (for the Wilcoxon signed-rank test), but also found that this is a no-go.
Are there any other options regarding this?
Some background: I have two different methods from two different authors, and I want to state that since there are no differences between them, one should use the simpler one.
Update: below you can find some sample data for both methods - method 1 in column 1 and method 2 in column 2. Values are dependent (paired). Columns separated with a tab.
0.045069233 0.044114038
0.04769785 0.047292581
0.051955983 0.052377575
0.047711922 0.048879883
0.044005404 0.044643139
0.045603963 0.047935382
0.048257908 0.048353034
0.045589891 0.045802094
0.043481932 0.043902961
0.049853653 0.05026849
0.044545762 0.045065293
0.041357087 0.041142069
0.04399696 0.043582123
0.046656535 0.048246651
0.046656535 0.0463402
0.045066419 0.044957785
0.042950017 0.043476303
0.049302038 0.047615108
0.05143814 0.052491838
0.036578296 0.036366093
0.047723179 0.047617922
0.047725993 0.046558032
0.045074862 0.045594394
0.043473489 0.044952719
0.046648092 0.045068108
0.047714736 0.047401779
0.043473489 0.043470111
0.0546043 0.053232016
0.042947203 0.043152651
0.042429359 0.043155465
0.047191264 0.048875943
0.040813914 0.041778116
0.049302038 0.0488872
0.046121806 0.045916357
0.04559552 0.045063605
0.050889339 0.05005291
0.045083305 0.044008781
0.036049195 0.035844872
0.050365867 0.049311606
0.044002589 0.044532815
0.04718845 0.046546775
0.048775751 0.045383316
0.047714736 0.048045705
0.040284814 0.038278172
0.043999775 0.047074187
0.044534504 0.04474333
0.046127434 0.046334572
0.030217832 0.029900934
0.042412473 0.043476303
0.04240403 0.043900709
0.042423731 0.041353146
0.049310481 0.048038388
0.039764156 0.039553642
0.051440955 0.050577508
0.04984521 0.048767871
0.048257908 0.04729427
0.042398401 0.043157717
0.041348643 0.040503771
0.047711922 0.047933694
0.044540133 0.043583249
0.048778566 0.049092086
0.041883373 0.042201396
0.045052347 0.045284251
0.046664978 0.045174491
0.047731622 0.048883823
0.045589891 0.045492514
0.046116177 0.045810537
0.051964426 0.051527074
0.043484746 0.045594394
0.044545762 0.045281436
0.032337048 0.029580097
0.04718845 0.047612856
0.047199707 0.046657098
0.047182821 0.047504222
0.037104582 0.036789936
0.032339863 0.032554317
0.036575481 0.036157267
0.038176855 0.037964089
0.05141844 0.050258359
0.045055162 0.045488574
0.046645277 0.047825622
0.048767308 0.049621749
0.052487898 0.051109422
0.035536981 0.034679725
0.048241022 0.04729427
0.047191264 0.046766295
0.051429697 0.050153664
0.047202522 0.046343578
0.039229427 0.039237307
0.045587076 0.044001463
0.049316109 0.050368119
0.049831138 0.051958798
0.043985703 0.045915794
0.046645277 0.04592086
0.038691883 0.039340876
0.044016661 0.045705843
0.039766971 0.039765845
0.048232579 0.046756163
0.038722841 0.037751886
0.04876168 0.047928065
As an example: one distribution is gaussian distribution, the other one is obtained by drawing a number from gaussian distribution and truncating it to 10 hexadecimal symbols. These distributions are different? From one point, yes - you almost surely can distinguish samples from these distributions. From the other point, their CDFs are almost equal (and all tests will fail to distinguish them).
– Alleo Feb 28 '15 at 17:22