Let's say I have a data like this, and I'm trying to build a mixed model.
studentId | courseId | courseName | year | courseGroup | timespent | count | mark
stud1 | 19 | M101 | 2008 | F | 12.3 | 23 | 3.7
stud1 | 21 | E102 | 2008 | C | 2.3 | 15 | 4
stud1 | 109 | H300 | 2008 | E | 22.3 | 5 | 3
stud2 | 19 | M101 | 2008 | F | 3.3 | 45 | 3
stud2 | 21 | E102 | 2008 | C | 12.3 | 56 | 3.3
stud3 | 200 | M101 | 2009 | F | 12.3 | 21 | 3.7
the full model would be:
lmer.model.full <- mark ~ courseGroup + timespent + count + courseGroup:(timespent+count) + (1|studentId) + (1|courseName/courseId)
Running the model results with the following summary:
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 3.909e+00 1.282e-01 8.089e+02 30.491 < 2e-16 ***
courseGroupE -2.404e-01 1.835e-01 6.417e+02 -1.311 0.19049
courseGroupF -1.105e-01 1.493e-01 2.246e+02 -0.740 0.46008
timespent -1.552e-02 5.065e-02 1.872e+03 -0.306 0.75932
count -5.244e-02 5.409e-02 1.869e+03 -0.969 0.33244
courseGroupE:timespent 8.740e-02 5.184e-02 1.823e+03 1.686 0.09196 .
courseGroupF:timespent 2.350e-03 3.992e-02 1.881e+03 0.059 0.95308
courseGroupE:count -6.546e-02 2.673e-02 1.158e+03 -2.449 0.01446 *
courseGroupF:count -7.015e-02 2.470e-02 1.373e+03 -2.840 0.00457 **
In order to proceed with the model selection using backward elimination, I should continue by removing the one with the highest p-value, which is timespent. But, the interaction between timespent and courseGroup is marginally significant, might become significant in later iterations. On the other hand, p-value for interaction between F group and timespent is 0.95. What should I do in this case and how to proceed further?
One more thing that puzzle me... what should I be doing in this case:
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 3.909e+00 1.282e-01 8.089e+02 30.491 < 2e-16 ***
courseGroupE -2.404e-01 1.835e-01 6.417e+02 -1.311 0.16049
courseGroupF -1.105e-01 1.493e-01 2.246e+02 -0.740 0.96008
timespent -1.552e-02 5.065e-02 1.872e+03 -0.306 0.25932
count -5.244e-02 5.409e-02 1.869e+03 -0.969 0.33244
courseGroupE:timespent 8.740e-02 5.184e-02 1.823e+03 1.686 0.09196 .
courseGroupF:timespent 2.350e-03 3.992e-02 1.881e+03 0.059 0.25308
courseGroupE:count -6.546e-02 2.673e-02 1.158e+03 -2.449 0.01446 *
courseGroupF:count -7.015e-02 2.470e-02 1.373e+03 -2.840 0.00457 **
Should I remove courseGroup from the model, leaving only with timespent and count, or remove count? What would be the best indicator that courseGroup should be excluded from the model?
lmeroutput doesn't offer this information. – usεr11852 Jan 04 '15 at 00:14?lme4::pvalues. – Tim Jan 04 '15 at 12:12