I think you have done everything right. If you coded it correct it takes O(n) time and O(n) memory to compute flood fill, where n is the number of cells, and it can be proven that it's impossible to do better (in general case). And after fill is complete you just return distance for any destination with O(1), it easy to see that it also can be done better.
So if you want to optimize performance, you can only focused on CODE LOCAL OPTIMIZATION. Which will not affect asymptotic but can significantly improve your real execution time. But it's hard to give you any advice for code optimization without actually seeing source.
So if you really want to see optimized code see the following (Pure C):
include
int* BFS()
{
int N, M; // Assume we have NxM grid.
int X, Y; // Start position. X, Y are unit based.
int i, j;
int movex[4] = {0, 0, 1, -1}; // Move on x dimension.
int movey[4] = {1, -1, 0, 0}; // Move on y dimension.
// TO DO: Read N, M, X, Y
// To reduce redundant functions calls and memory reallocation
// allocate all needed memory once and use a simple arrays.
int* map = (int*)malloc((N + 2) * (M + 2));
int leadDim = M + 2;
// Our map. We use one dimension array. map[x][y] = map[leadDim * x + y];
// If (x,y) is occupied then map[leadDim*x + y] = -1;
// If (x,y) is not visited map[leadDim*x + y] = -2;
int* queue = (int*)malloc(N*M);
int first = 0, last =1;
// Fill the boarders to simplify the code and reduce conditions
for (i = 0; i < N+2; ++i)
{
map[i * leadDim + 0] = -1;
map[i * leadDim + M + 1] = -1;
}
for (j = 0; j < M+2; ++j)
{
map[j] = -1;
map[(N + 1) * leadDim + j] = -1;
}
// TO DO: Read the map.
queue[first] = X * leadDim + Y;
map[X * leadDim + Y] = 0;
// Very simple optimized process loop.
while (first < last)
{
int current = queue[first];
int step = map[current];
for (i = 0; i < 4; ++i)
{
int temp = current + movex[i] * leadDim + movey[i];
if (map[temp] == -2) // only one condition in internal loop.
{
map[temp] = step + 1;
queue[last++] = temp;
}
}
++first;
}
free(queue);
return map;
}
Code may seems tricky. And of course, it doesn't look like OOP (I actually think that OOP fans will hate it) but if you want something really fast that's what you need.