I read a lot of answers but none seems to correctly explain where the word double comes from. I remember a very good explanation given by a University professor I had some years ago.
Recalling the style of VonC's answer, a single precision floating point representation uses a word of 32 bit.
- 1 bit for the sign, S
- 8 bits for the exponent, 'E'
- 24 bits for the fraction, also called mantissa, or coefficient (even though just 23 are represented). Let's call it 'M' (for mantissa, I prefer this name as "fraction" can be misunderstood).
Representation:
S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM
bits: 31 30 23 22 0
(Just to point out, the sign bit is the last, not the first.)
A double precision floating point representation uses a word of 64 bit.
- 1 bit for the sign, S
- 11 bits for the exponent, 'E'
- 53 bits for the fraction / mantissa / coefficient (even though only 52 are represented), 'M'
Representation:
S EEEEEEEEEEE MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
bits: 63 62 52 51 0
As you may notice, I wrote that the mantissa has, in both types, one bit more of information compared to its representation. In fact, the mantissa is a number represented without all its non-significative 0. For example,
- 0.000124 becomes 0.124 × 10−3
- 237.141 becomes 0.237141 × 103
This means that the mantissa will always be in the form
0.α1α2...αt × βp
where β is the base of representation. But since the fraction is a binary number, α1 will always be equal to 1, thus the fraction can be rewritten as 1.α2α3...αt+1 × 2p and the initial 1 can be implicitly assumed, making room for an extra bit (αt+1).
Now, it's obviously true that the double of 32 is 64, but that's not where the word comes from.
The precision indicates the number of decimal digits that are correct, i.e. without any kind of representation error or approximation. In other words, it indicates how many decimal digits one can safely use.
With that said, it's easy to estimate the number of decimal digits which can be safely used:
- single precision: log10(224), which is about 7~8 decimal digits
- double precision: log10(253), which is about 15~16 decimal digits