I am trying to run a penalised multinomial regression. It is my understanding that predictor variables can be numerical. However, when I try to tune my model using a validation set, I get the error that says that all my variables must be character or factor.
This is the output of example_data <- dput(head(my_dataset))
structure(list(...1 = c(1, 2, 3, 4, 5, 6), id = c(10, 15, 49,
51, 54, 58), npsn = c("10114357", "10114353", "10114234", "69786607",
"10114364", "69935355"), village = c("-", "-", "ALUE TAMPAK",
"Lueng Baro", "-", "Suwak Indrapuri"), subdistrict = c("Kec. Johan Pahlawan",
"Kec. Bubon", "Kec. Kaway XVI", "Kec. Sungai Mas", "Kec. Panton Reu",
"Kec. Johan Pahlawan"), district = c("Kab. Aceh Barat", "Kab. Aceh Barat",
"Kab. Aceh Barat", "Kab. Aceh Barat", "Kab. Aceh Barat", "Kab. Aceh Barat"
), public = c("SWASTA", "SWASTA", "SWASTA", "SWASTA", "SWASTA",
"SWASTA"), morning = c(NA, NA, NA, "Pagi/6 hari", NA, "Pagi/6 hari"
), level = c("MTs", "MTs", "MA", "SD", "MTs", "SMP"), authority = c("Kementerian Agama",
"Kementerian Agama", "Kementerian Agama", "Kementerian Pendidikan dan Kebudayaan",
"Kementerian Agama", "Kementerian Pendidikan dan Kebudayaan"),
cert_est = c("<font color=\"#FF0000\">Perlu Update</font>",
"<font color=\"#FF0000\">Perlu Update</font>", "<font color=\"#FF0000\">Perlu Update</font>",
"421.2/788/2012", "<font color=\"#FF0000\">Perlu Update</font>",
"421.2/1265.a/2015"), date_est = c("-", "-", "-", "2012-12-31",
"-", "2015-10-05"), cert_ops = c("<font color=\"#FF0000\">Perlu Update</font>",
"<font color=\"#FF0000\">Perlu Update</font>", "<font color=\"#FF0000\">Perlu Update</font>",
"421.2/ 788 / 2013", "<font color=\"#FF0000\">Perlu Update</font>",
"421.2/1360/2015"), date_ops = c(NA, NA, NA, "2013-08-14",
NA, "2015-10-22"), grade = c("B", "B", "B", "A", "B", "B"
), area = c(0, 0, 0, 1000, 0, 1200), latlon = c("L.marker([4.1583390,96.1241250]).addTo(mymap);",
"L.marker([4.2839640,96.0855880]).addTo(mymap);", "L.marker([4.2137130,96.1585580]).addTo(mymap);",
"L.marker([4.5028000,96.0300000]).addTo(mymap);", "L.marker([4.3833290,96.1981020]).addTo(mymap);",
"L.marker([4.1923750,96.1241380]).addTo(mymap);"), name_clean = c("MTSS NURUL FALAH",
"MTSS BANDA LAYUNG", "MAS ALUE TAMPAK", "SDS LUENG BARO",
"MTSS KRUENG MANGGI", "SMP ISLAM BAHRUL ULUM ISLAMIC SCHOOL"
), name = c("MTSS NURUL FALAH", "MTSS BANDA LAYUNG", "MAS ALUE TAMPAK",
"SDS LUENG BARO", "MTSS KRUENG MANGGI", "SMP ISLAM BAHRUL ULUM ISLAMIC SCHOOL"
), muh1 = c(0, 0, 0, 0, 0, 0), muh2 = c(0, 0, 0, 0, 0, 0),
muh = c(0, 0, 0, 0, 0, 0), chr1 = c(0, 0, 0, 0, 0, 0), chr2 = c(0,
0, 0, 0, 0, 0), chr3 = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), chr = c(0, 0, 0, 0, 0, 0), hindu = c(NA,
NA, NA, NA, NA, NA), nu1 = c(0, 0, 0, 0, 0, 0), nu2 = c(0,
0, 0, 0, 0, 0), nu_klaten = c(NA, NA, NA, NA, NA, NA), nu_sby = c(NA,
NA, NA, NA, NA, NA), nu = c(0, 0, 0, 0, 0, 0), it1 = c(0,
0, 0, 0, 0, 0), it = c(0, 0, 0, 0, 0, 0), other_swas_international = c(0,
0, 0, 0, 0, 0), afiliasi = c(99, 99, 99, 99, 99, 99), X1 = c(FALSE,
FALSE, FALSE, TRUE, FALSE, FALSE), X2 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, TRUE), X3 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X4 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X5 = c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE), X6 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, TRUE), X7 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X8 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X9 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X10 = c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE),
X11 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X12 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X13 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X14 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X15 = c(FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE), X16 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X17 = c(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE),
X18 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X19 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X20 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X21 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, TRUE), X22 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X23 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X24 = c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE),
X25 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X26 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X27 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X28 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X29 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X30 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X31 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X32 = c(FALSE, FALSE, FALSE, FALSE, TRUE, TRUE), X33 = c(TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE), X34 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X35 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, TRUE), X36 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X37 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X38 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X39 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, TRUE), X40 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X41 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X42 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X43 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X44 = c(FALSE, FALSE, TRUE, FALSE, TRUE, FALSE),
X45 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X46 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X47 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X48 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X49 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X50 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X51 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X52 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X53 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X54 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X55 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X56 = c(TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE), X57 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X58 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X59 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X60 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X61 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X62 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X63 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X64 = c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE), X65 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X66 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X67 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X68 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X69 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X70 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X71 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X72 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X73 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X74 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X75 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X76 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X77 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X78 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X79 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X80 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X81 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X82 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X83 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
TRUE), X84 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X85 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X86 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X87 = c(TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE), X88 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X89 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, TRUE), X90 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X91 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
X92 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X93 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X94 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X95 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X96 = c(FALSE, TRUE, FALSE, FALSE,
TRUE, FALSE), X97 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X98 = c(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE),
X99 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X100 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X101 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X102 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X103 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X104 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X105 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X106 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X107 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X108 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X109 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X110 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X111 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X112 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X113 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X114 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X115 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X116 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X117 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X118 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X119 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X120 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X121 = c(TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE), X122 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X123 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X124 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X125 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X126 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X127 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X128 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X129 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X130 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X131 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X132 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X133 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X134 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X135 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X136 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X137 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X138 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X139 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X140 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X141 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X142 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X143 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X144 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X145 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X146 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X147 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X148 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X149 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X150 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X151 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X152 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X153 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X154 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X155 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X156 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X157 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X158 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X159 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X160 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X161 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X162 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X163 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X164 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X165 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X166 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X167 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X168 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X169 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X170 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X171 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X172 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X173 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X174 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X175 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X176 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X177 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X178 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X179 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X180 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X181 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X182 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X183 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X184 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X185 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X186 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X187 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X188 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X189 = c(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE),
X190 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), X191 = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), X192 = c(FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE), X193 = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE), X194 = c(FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE), X195 = c(FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE), X196 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
), X197 = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)), row.names = c(NA,
-6L), class = c("tbl_df", "tbl", "data.frame"))
library(tidymodels)
library(readr)
library(broom.mixed)
library(dotwhisker)
library(skimr)
library(rpart.plot)
library(vip)
library(glmnet)
library(naniar)
library(tidyr)
library(dplyr)
# Data cleaning
skool <-
read_csv("/Users/riddhimaagupta/Desktop/skul_data_word.csv")
skool_v1 <-
select (school, -c(...1, id, npsn, public, cert_est, cert_ops, name_clean, name, muh1, muh2, muh, chr1, chr2, chr3, chr, hindu, nu1, nu2, nu_klaten, nu_sby, nu, it1, it, other_swas_international))
str(skool_v1)
skool_v2 <-
filter(skool_v1, afiliasi != 99)
str(skool_v2)
glimpse(skool_v2)
skool_v2.1 <- replace_with_na(skool_v2,
replace = list(village = c("-")))
skool_v2.2 <- replace_with_na(skool_v2.1,
replace = list(area = c("0")))
skool_v2.3 <- replace_with_na(skool_v2.2,
replace = list(date_est = c("-")))
skool_v2.3$date_est <- as.Date(skool_v2.3$date_est, format = '%Y-%m-%d')
skool_v2.3$date_ops <- as.Date(skool_v2.3$date_ops, format = '%Y-%m-%d')
skool_v2.3$latlon <- gsub(".*\\[", "", skool_v2.3$latlon)
skool_v2.3$latlon <- gsub("\\].*", "", skool_v2.3$latlon)
skool_v2.4 <- skool_v2.3 %>%
separate(latlon, c("latitude", "longitude"), ",")
skool_v2.4$latitude <- as.numeric(skool_v2.4$latitude)
skool_v2.4$longitude <- as.numeric(skool_v2.4$longitude)
skool_v3 <- skool_v2.4 %>%
mutate_if(is.character, tolower) %>%
mutate_if(is.character, as.factor)
skool_v4 <- skool_v3 %>%
mutate_if(is.logical, as.factor)
skool_v4 <- skool_v3 %>%
mutate_if(is.logical, as.factor)
skool_v5 <- skool_v4 %>%
na.omit()
# Data splitting
set.seed(123)
splits <- initial_split(skool_v5 , strata = afiliasi)
school_train <- training(splits)
school_test <- testing(splits)
set.seed(234)
val_set <- validation_split(skool_v5,
strata = afiliasi,
prop = 0.80)
# Penalised multinomial regression
lr_mod <-
multinom_reg(penalty = tune(), mixture = 1) %>%
set_engine("glmnet")
lr_recipe <-
recipe(afiliasi ~ ., data = school_train) %>%
step_date(date_est, date_ops) %>%
step_rm(date_est, date_ops) %>%
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors()) %>%
step_normalize(all_predictors())
lr_workflow <-
workflow() %>%
add_model(lr_mod) %>%
add_recipe(lr_recipe)
lr_reg_grid <- tibble(penalty = 10^seq(-4, -1, length.out = 30))
lr_reg_grid %>% top_n(-5)
lr_reg_grid %>% top_n(5)
lr_res <-
lr_workflow %>%
tune_grid(val_set,
grid = lr_reg_grid,
control = control_grid(save_pred = TRUE, verbose = TRUE),
metrics = metric_set(roc_auc))
x validation: preprocessor 1/1: Error in `prep()`:
! Columns must be...
Warning message:
All models failed. See the `.notes` column.
I don't know how to proceed. I am new at both R and machine learning. Any help will be appreciated!