I have a DataFrame like this:
| YEAR | STATE_ABBR | STATE_NAME | VICTIM_COUNT |
|---|---|---|---|
| 1991 | AR | Arkansas | 2 |
| 1991 | AR | Arkansas | 1 |
| 1991 | NY | New York | 1 |
| .... | .... | .... | .... |
| 2020 | NJ | New Jersey | 3 |
| 2020 | NJ | New Jersey | 1 |
| 2020 | NJ | New Jersey | 1 |
I want to see the number of occurence of each states per year from 1991 to 2020, so I use groupby().
raw_csv_data = pd.read_csv('hate_crime.csv')
raw_csv_data["STATE_ABBR"].groupby(raw_csv_data["DATA_YEAR"]).value_counts()
And I got a Series as the result:
DATA_YEAR STATE_ABBR
1991 NY 943
NJ 894
MD 431
OR 296
PA 277
...
2020 WY 18
SD 17
RI 14
DE 13
AK 10
Is there any ways that I can achieved a DataFrame like this:
DATA_YEAR STATE_ABBR STATE_NAME COUNT
1991 NY New York 943
NJ New Jersey 894
MD Maryland 431
OR Oregon 296
PA Pennsylvania 277
...
2020 WY Wyoming 18
SD South Dakota 17
RI Rhode Island 14
DE Delaware 13
AK Alaska 10