I have two dataframes that look like this:
dataframe1
col1 value
date
2021-09-14 1 0.133
2022-03-09 1 0.452
2022-01-20 1 0.891
2021-12-25 1 0.321
dataframe2
col1 value
date
2021-09-05 1 0.129
2022-03-12 1 0.546
2022-01-17 1 0.725
2021-12-10 1 0.492
*the values in col 1 are always the same (and also same between dataframes). *the date is index
I would like to create new dataframe that will have values and dates from both columns as one, like this:
value
date
2021-09-05 0.129
2021-09-14 0.133
2022-03-12 0.546
2022-01-17 0.725
2021-12-10 0.492
2022-03-09 0.452
2022-01-20 0.891
2021-12-25 0.321
At the moment in order to do that I make list from each dataframe of the values and of the dates, and then I make new dataframe, like this:
values=dataframe1['values'].tolist()+dataframe2['values'].tolist()
times=[str(x) for x in dataframe1.index.tolist()]+[str(x) for x in dataframe2.index.tolist()]
harmony=pd.DataFrame(zip(times,values),columns=['time','Combined Dataset'])
harmony['time']=pd.to_datetime(harmony['time'],format='%Y-%m-%d')
harmony=harmony.set_index('time')
My question if there is any nicer/smarter/more pythonic way to do that.