0

So I have a pretty big dataframe, and I want to make sure all of the columns are numeric. When I run this df.head() before i try to do this it looks like:

Unnamed: 0  CoC Number  CoC Name    CoC Category    Overall Homeless, 2018  Sheltered ES Homeless, 2018 Sheltered TH Homeless, 2018 Sheltered SH Homeless, 2018 Sheltered Total Homeless, 2018  Unsheltered Homeless, 2018  ... Homeless Family Households, 2007    Sheltered ES Homeless Family Households, 2007   Sheltered TH Homeless Family Households, 2007   Sheltered Total Homeless Family Households, 2007    Unsheltered Homeless Family Households, 2007    Chronically Homeless Individuals, 2007  Sheltered Total Chronically Homeless Individuals, 2007  Unsheltered Chronically Homeless Individuals, 2007  year.11 state
0   0   AK-500  Anchorage CoC   Other Urban CoCs    1094    751 249 0   1000    94  ... 93  39  46  85  8   224 187 37  2007.0  AK
1   1   AK-501  Alaska Balance of State CoC Rural CoCs  922 497 210 0   707 215 ... 97  56  24  80  17  54  34  20  2007.0  AK
2   2   AL-500  Birmingham/Jefferson, St. Clair, Shelby Counti...   Suburban CoCs   901 431 219 32  682 219 ... 228 31  122 153 75  516 269 247 2007.0  AL
3   3   AL-501  Mobile City & County/Baldwin County CoC Other Urban CoCs    551 225 93  0   318 233 ... 48  12  36  48  0   84  10  74  2007.0  AL
4   4   AL-502  Florence/Northwest Alabama CoC  Rural CoCs  256 128 106 0   234 22  ... 38  

(sorry I know that it's a little messy), and after I run this code to group by state, and make everything numeric:

df = df.dropna()
df = df.apply(pd.to_numeric, errors = "ignore").combine_first(df)
df = df.groupby("state").mean()

df.head() Then reads as such, you can see that 2018 though 2011 have been removed for some reason...That's my issue.

    Unnamed: 0  year    year.1  year.2  year.3  year.4  year.5  year.6  year.7  Overall Homeless, 2010  ... Homeless Family Households, 2008    Sheltered ES Homeless Family Households, 2008   Sheltered TH Homeless Family Households, 2008   Sheltered Total Homeless Family Households, 2008    Unsheltered Homeless Family Households, 2008    Chronically Homeless Individuals, 2008  Sheltered Total Chronically Homeless Individuals, 2008  Unsheltered Chronically Homeless Individuals, 2008  year.10 year.11
state                                                                                   
AK  0.5 2018.0  2017.0  2016.0  2015.0  2014.0  2013.0  2012.0  2011.0  931.500000  ... 86.000000   41.500000   37.500000   79.000000   7.000000    219.500000  177.500000  42.000000   2008.0  2007.0
AL  5.5 2018.0  2017.0  2016.0  2015.0  2014.0  2013.0  2012.0  2011.0  755.750000  ... 60.375000   16.375000   30.625000   47.000000   13.375000   131.500000  72.375000   59.125000   2008.0  2007.0
AR  13.0    2018.0  2017.0  2016.0  2015.0  2014.0  2013.0  2012.0  2011.0  1353.428571 ... 80.714286   23.571429   22.285714   45.857143   34.857143   185.857143  81.142857   104.714286  2008.0  2007.0
AZ  18.0    2018.0  2017.0  2016.0  2015.0  2014.0  2013.0  2012.0  2011.0  6636.000000 ... 454.333333  130.333333  275.666667  406.000000  48.333333   1482.000000 456.666667  1025.333333 2008.0  2007.0
CA  41.0    2018.0  2017.0  2016.0  2015.0  2014.0  2013.0  2012.0  2011.0  2953.418605 ... 258.465116  58.720930   101.093023  159.813953  98.651163   923.348837  151.418605  
Jensen_ray
  • 91
  • 1
  • 9
  • Please make a [mre] including minimal example input data and the desired output. See [How to make good reproducible pandas examples](/q/20109391/4518341) for specifics. – wjandrea Mar 27 '22 at 17:29

0 Answers0