0

I am trying to get the outliers of a column (with IQR), once I get the outliers I want to set the values where the outliers are in my main dataframe to null in order to impute them afterwards. This is the way I implemeted it:

 df_outliers_detected = detect_outliers_IQR(df['Outliers'])
 df_outliers_detected = pd.DataFrame(df_outliers_detected)
 print(df_outliers_detected)

 for i in range(len(df)):
  for j in range(len df_outliers_detected)):
     if(df.loc[i, "Outliers"] ==  df_outliers_detected.iloc[j,0]):
       df.loc[i,'Outliers'] = None
                    
 print(df['Outliers'].head(100))




This 2 for loops makes the program really slow, is their a better way to implement this?

The function code of "remove_outliers_IQR":

def detect_outliers_IQR(df):

    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    
    print(df)
    print("\n")
    df_outlier = df[((df<(Q1-1.5*IQR)) | (df>(Q3+1.5*IQR)))]
    print(len(df_outlier))
    return df_outlier

1 Answers1

2

You can take advantage of the logical indexing you already used in your function.

def detect_outliers_IQR(df_input):
    df = df_input.copy()
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    df_outlier = (df<(Q1-1.5*IQR)) | (df>(Q3+1.5*IQR))
    df[df_outlier] = None
    return df

# replace outliers
df_outliers_detected = detect_outliers_IQR(df['Outliers'])
print(df_outliers_detected)
Pantelis
  • 161
  • 1
  • 9