I would like to know if there is some way to know in advance which real value... would be represented in an imprecise way
The short and only partly facetious answer is... all of them!
There are roughly 2^32 = 4294967296 values of type float. And there are an uncountably infinite number of real numbers. So, for a randomly-chosen real number, the chance that it can be exactly represented as a value of type float is 4294967296/∞, which is 0.
If you use type double, there are approximately 2^64 = 18446744073709551616 of those, so the chance that a randomly-chosen real number can be exactly represented as a double is 18446744073709551616/∞, which is again... 0.
I realize I'm not answering quite the question you asked, but in general, it's usually a bad idea to use binary floating-point types as if they were an exact representation of decimal fractions. Attempts to assume that they're ever an exact representation usually lead to trouble. In general, it's best to assume that floating-point types are an imperfect (approximate) realization of of real numbers, period (that is, without assuming decimal). If you never assume they're exact (which for true real numbers, they virtually never are), you'll never get into trouble in cases where you thought they'd be exact, but they weren't.
[Footnote 1: As Eric P. reminds in a comment, there's no such thing as a "randomly-chosen real number", which is why this is a partially facetious answer.]
[Footnote 2: I now see your comment where you say that you do assume they are all imprecise, but that you would "like to understand the phenomenon in a deeper way", in which case my answer does you no good, but hopefully some of the others do. I can especially commend Martin Rosenau's answer, which goes straight to the heart of the matter: a rational number is representable exactly in base 2 if and only if its reduced denominator is a pure power of 2, or stated another way, has only 2's in its prime factorization. That's why, if you take any number you can actually store in a float or double, and print it back out using %f and enough digits, with a properly-written printf, you'll notice that the numbers always end in things like ...625 or ...375. Binary fractions are like the English rulers still used in the U.S.: everything is halves and quarters and eights and sixteenths and thirty-seconds and sixty-fourths.]