I am very new to reinforcement learning and I am trying to make a model traverse a very small graph, but it does not seem to be learning anything. I tried to follow the DQN tutorial on https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html and then replace the environment with my own, but it doesn't seem to convert at all.
Is anyone willing to take a look at my code?
def __init__(self, adjacency: np.array):
super().__init__()
self.action_space = spaces.Discrete(4,)
self.observation_space = spaces.Discrete(4,)
self._graph = nx.DiGraph(adjacency)
self._state = 0
self._previous_states = []
self._num_steps = 0
self._episode_ended = False
def get_state(self):
return self._state
def _remap_move(self) -> int:
return np.argmax(nx.linalg.adjacency_matrix(self._graph)[self._state, :])
def _legal_move(self, action) -> bool:
return bool(nx.linalg.adjacency_matrix(self._graph)[self._state, action])
def _output_tuple(self, reward):
return self._state, reward, self._episode_ended, _
def step(self, action):
if self._episode_ended:
self.reset()
if self._num_steps < 50:
if not self._legal_move(action):
action = self._remap_move()
self._num_steps += 1
if self._state == action:
return self._output_tuple(-1)
self._state = action
if action == 4:
self._episode_ended = True
return self._output_tuple(100)
else:
# if action in self._previous_states:
# return self._output_tuple(-1)
# else:
self._previous_states.append(action)
return self._output_tuple(1)
self._episode_ended = True
return self._output_tuple(-1)
def reset(self):
self._state = 0
self._episode_ended = False
def render(self, mode="human"):
pass
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.memory = deque([],maxlen=capacity)
def push(self, *args):
"""Save a transition"""
self.memory.append(Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
BATCH_SIZE = 32
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
TARGET_UPDATE = 10
n_actions = 4
adj = np.array([[0, 1, 0, 0], [0, 1, 1, 0], [1, 1, 1, 1], [1, 0, 1, 1]])
g = nx.DiGraph(adj)
env = GraphWalk(g)
class DQN(nn.Module):
def __init__(self, input_shape, n_actions):
super(DQN, self).__init__()
self.fc = nn.Sequential(
nn.Linear(1, 100),
nn.ReLU(),
nn.Linear(100, n_actions)
)
# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):
return self.fc(x.view(x.size(0), -1))
policy_net = DQN(1, n_actions).to(device)
target_net = DQN(1, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.RMSprop(policy_net.parameters())
memory = ReplayMemory(10000)
steps_done = 0
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# print(state_action_values)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
print(loss)
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# print(state)
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
# print(policy_net(state))
return torch.tensor([[policy_net(state).argmax()]], device=device, dtype=torch.long)
else:
return torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long)
episode_durations = []
def plot_durations():
plt.figure(2)
plt.clf()
rew = torch.tensor(rewards, dtype=torch.float)
plt.title('Training...')
plt.xlabel('Episode')
plt.ylabel('Duration')
plt.plot(rew.numpy())
# Take 100 episode averages and plot them too
if len(rew) >= 100:
means = rew.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
plt.plot(means.numpy())
plt.pause(0.001) # pause a bit so that plots are updated
def get_cuda_state():
return torch.Tensor([env.get_state()])
actions = []
rewards = []
num_episodes = 100
for i_episode in range(num_episodes):
# Initialize the environment and state
env.reset()
last_state = get_cuda_state()
current_state = get_cuda_state()
state = current_state - last_state
r = []
for t in count():
# Select and perform an action
action = select_action(state)
actions.append(action.item())
_, reward, done, _ = env.step(action.item())
r.append(reward)
reward = torch.tensor([reward], device=device)
# Observe new state
last_state = current_state
current_state = get_cuda_state()
if not done:
next_state = current_state - last_state
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the policy network)
optimize_model()
if done:
rewards.append(sum(r)/len(r))
# plot_durations()
break
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
print('Complete')