Suppose I have the following df:
df = pd.DataFrame({
'col1':['x1','x2','x3'],
'col2':['y1','y2','y3'],
'col3':['z1','z2','z3'],
'col4':['a1','b2','c3']
})
and a list of elements:
l = ['x1','x2','y3']
I want to search elements of l in all the columns of my df, as it stands from my list x1 and x2 appear in col1 and y3 is in col2, so I did:
df.loc[df['col1'].apply(lambda x: True if any(i in x for i in l) else False)|
df['col2'].apply(lambda x: True if any(i in x for i in l) else False)]
which gives me
col1 col2 col3 col4
0 x1 y1 z1 a1
1 x2 y2 z2 b2
2 x3 y3 z3 c3
as desired but the above method needs me to make a | operator for each column. So I wonder how can I do this iteration over all columns efficiently without using | for every column?