0

I want to get a random point in the red circle, and escaping the blue circle :

enter image description here

I made this:

double r = radius * Math.sqrt(R.nextDouble());
double theta = R.nextDouble() * 2 * Math.PI;
int x = (int) (r * Math.cos(theta));
int z = (int) (r * Math.sin(theta));

But it only find in red circle.

So, I tried to add something when X or Z are below the blue's circle radius, but I get this result :

enter image description here

I also tried to upgrade X or Z when distance between the random point and the center (which is 0/0) are too near.

I also made this snippet which test lot of X/Z position, but it will try everytimes. It's clearly not optimized because I have to filter all generated values, instead of directly generate values in required range.

function getNumberIn(min, max) {
   return Math.random() * (max - min) + min;
}

var canvas = document.getElementById("circlecanvas");
var context = canvas.getContext("2d");
context.beginPath();
context.arc(150, 150, 150, 0, Math.PI * 2, false);
context.fillStyle = "yellow";
context.fill();
context.closePath();

context.beginPath();
context.arc(150, 150, 50, 0, Math.PI * 2, false);
context.fillStyle = "red";
context.fill();
context.closePath();

context.fillStyle = "black";

let nb = 0;
for (let i = 0; i < 1000; i++) {
  let x = getNumberIn(0, 300);
  let z = getNumberIn(0, 300);
  
  let distance = Math.sqrt((x - 150) * (x - 150) + (z - 150) * (z - 150));
  if ((distance >= 50 || distance <= -50) && !(distance >= 150 || distance <= -150)) {
    context.fillRect(x, z, 3, 3);
  } else {
    nb++;
  }
}
console.log("Amount of skipped values: " + nb);
<canvas id="circlecanvas" width="300" height="300"></canvas>

How can I get random point in the red circle, excluding the blue one ?

Elikill58
  • 3,190
  • 22
  • 17
  • 38

1 Answers1

2

Do the next change:

double r = Math.sqrt(
                     r_small*r_small + 
                     R.nextDouble() * (r_large*r_large-r_small*r_small));
//next lines remain the same 
double theta = R.nextDouble() * 2 * Math.PI;
int x = (int) (r * Math.cos(theta));
int z = (int) (r * Math.sin(theta));

where r_small is blue radius and r_large is outer radius of the red ring

This approach provides proper minimal and maximal distances and uniform distribution of points in the red ring.

MBo
  • 72,080
  • 5
  • 47
  • 77