I have a dataframe df with:
df = pd.DataFrame(
{
"place": [2, 2, 2, 2, 2, 2],
"date": [
"2021-02-28",
"2021-02-28",
"2021-03-31",
"2021-03-31",
"2021-04-30",
"2021-04-30",
],
"special_handling": [1, 0, 1, 0, 1, 0],
"count": [100, 200, 500, 600, 300, 400],
}
)
| place | date | special_handling | count |
|---|---|---|---|
| 2 | 2021-02-28 | 1 | 100 |
| 2 | 2021-02-28 | 0 | 200 |
| 2 | 2021-03-31 | 1 | 500 |
| 2 | 2021-03-31 | 0 | 600 |
| 3 | 2021-04-30 | 1 | 300 |
| 3 | 2021-04-30 | 0 | 400 |
I would like to transform the column "special_handling" into 2 separate columns to reduce the number of rows for a better overview per place/date
| place | date | special_handling_0 | special_handling_1 |
|---|---|---|---|
| 2 | 2021-02-28 | 200 | 100 |
| 2 | 2021-03-31 | 600 | 500 |
| 3 | 2021-04-30 | 400 | 300 |
How can I do this in pandas?
And does this sort of transformation have a special name? I didn't know what to search for.