I am new to neural networks and am trying to get my model to predict the Gaussian noise applied to images from the MNIST dataset. I do this by adding noise with random standard deviation to each image. The x values are the images with noise applied, the y values are the standard deviation of the noise.
So far I am getting a 10% accuracy rating, and I have no ideas what to adjust.
Here is my code for the model itself:
noisey_x_train = tf.keras.utils.normalize(noisey_x_train, axis=1)
noisey_x_test = tf.keras.utils.normalize(noisey_x_test, axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(15, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(1, kernel_initializer='normal'))
model.compile(optimizer='adam',
loss=tf.keras.losses.MeanSquaredError(),
metrics=['accuracy'])
model.fit(noisey_x_train, noisey_y_train, epochs=10)
val_loss, val_acc = model.evaluate(noisey_x_test, noisey_y_test)
print("Loss: {} \nAccuracy: {}".format(val_loss, val_acc))
I would appreciate any help.