I have a cascaded neural network to perform binary classification. The first network is pertained so I simply initialise the model using its pretrained weights. The output of that model is then given to another fully connected neural network. Because I have a million samples, I use data generator to load the data on cpu and run the model on gpu. However, when I run the model my training loss and validation loss is nan through out. I have changed the learning rate and clipped gradient as well but nothing seems to work. My model is as follows:
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.backends.cudnn.benchmark = True
class LambdaBase(nn.Sequential):
def __init__(self, fn, *args):
super(LambdaBase, self).__init__(*args)
self.lambda_func = fn
def forward_prepare(self, input):
output = []
for module in self._modules.values():
output.append(module(input))
return output if output else input
class Lambda(LambdaBase):
def forward(self, input):
return self.lambda_func(self.forward_prepare(input))
class LambdaMap(LambdaBase):
def forward(self, input):
return list(map(self.lambda_func,self.forward_prepare(input)))
class LambdaReduce(LambdaBase):
def forward(self, input):
return reduce(self.lambda_func,self.forward_prepare(input))
def get_basset_model(load_weights = True):
pretrained_model_reloaded_th = nn.Sequential( # Sequential,
nn.Conv2d(4,300,(19, 1)),
nn.BatchNorm2d(300),
nn.ReLU(),
nn.MaxPool2d((3, 1),(3, 1)),
nn.Conv2d(300,200,(11, 1)),
nn.BatchNorm2d(200),
nn.ReLU(),
nn.MaxPool2d((4, 1),(4, 1)),
nn.Conv2d(200,200,(7, 1)),
nn.BatchNorm2d(200),
nn.ReLU(),
nn.MaxPool2d((4, 1),(4, 1)),
Lambda(lambda x: x.view(x.size(0),-1)), # Reshape,
nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(2000,1000)), # Linear,
nn.BatchNorm1d(1000,1e-05,0.1,True),#BatchNorm1d,
nn.ReLU(),
nn.Dropout(0.3),
nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(1000,1000)), # Linear,
nn.BatchNorm1d(1000,1e-05,0.1,True),#BatchNorm1d,
nn.ReLU(),
nn.Dropout(0.3),
nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(1000,164)), # Linear,
nn.Sigmoid(),
)
if load_weights:
sd = torch.load('pretrained.pth')
pretrained_model_reloaded_th.load_state_dict(sd)
return pretrained_model_reloaded_th
def next_model_architecture():
next_model = nn.Sequential(
nn.Linear(164, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid())
return next_model
def cascading_model(basset_model,next_model):
network = nn.Sequential(basset_model, next_model)
return network
if __name__ == "__main__":
###model_path = 'saved_model.pth'
model_path, epochs = sys.argv[1:]
# Parameters
params = {'batch_size': 500,
'shuffle': True,
'num_workers': 18}
max_epochs = int(epochs)
min_valid_loss = np.inf
# Datasets
with open('X.json', 'r') as fp:
partition = json.load(fp)
with open('Y.json', 'r') as fp:
labels = json.load(fp)
# Generators
training_set = DataGenerator(partition['train'], labels)
training_generator = torch.utils.data.DataLoader(training_set, **params)
validation_set = DataGenerator(partition['valid'], labels)
validation_generator = torch.utils.data.DataLoader(validation_set, **params)
basset_model = get_basset_model(load_weights = True)
if torch.cuda.is_available():
basset_model.cuda()
next_model = next_model_architecture()
if torch.cuda.is_available():
next_model.cuda()
network = cascading_model(basset_model,next_model)
if torch.cuda.is_available():
network.cuda()
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(network.parameters(), lr = 0.0001)
for e in range(3):
train_loss = 0.0
for data, labels in (training_generator):
#labels = labels.
data, labels = data.to(device,dtype=torch.float), labels.to(device)
# Clear the gradients
optimizer.zero_grad()
# Forward Pass
target = network(data)
# Find the Loss
labels = labels.float()
loss = criterion(target.squeeze(1),labels)
# Calculate gradients
loss.backward()
torch.nn.utils.clip_grad_norm_(network.parameters(), 5)
# Update Weights
optimizer.step()
# Calculate Loss
train_loss += loss.item()
valid_loss = 0.0
for data, labels in validation_generator:
if torch.cuda.is_available():
data, labels = data.to(device,dtype=torch.float), labels.to(device)
target = network(data)
labels = labels.float()
loss = criterion(target.squeeze(1),labels)
valid_loss = loss.item() * data.size(0)
print(f'Epoch {e+1} \t\t Training Loss: {train_loss / len(training_generator)} \t\t Validation Loss: {valid_loss / len(validation_generator)}')
if min_valid_loss > valid_loss:
print(f'Validation Loss Decreased({min_valid_loss:.6f}--->{valid_loss:.6f}) \t Saving The Model')
min_valid_loss = valid_loss
# Saving State Dict
torch.save(network.state_dict(), model_path)
And my data loader looks like:
import torch
import numpy as np
class DataGenerator(torch.utils.data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, list_IDs, labels):
'Initialization'
self.labels = labels
self.list_IDs = list_IDs
def __len__(self):
'Denotes the total number of samples'
return len(self.list_IDs)
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
ID = self.list_IDs[index]
# Load data and get label
X = np.load(ID,allow_pickle=True)
X = X.reshape((4,600,1))
y = self.labels[ID]
y_tensor = y
x_tensor = torch.from_numpy(X)
return x_tensor, y_tensor
My output looks like:
Training Loss: nan validation loss:nan
Training Loss: nan validation loss:nan
Training Loss: nan validation loss:nan
Training Loss: nan validation loss:nan
Can someone explain why this is happening? And how can I resolve this issue? Am I joining the two networks correctly?