I have a sequence of 50, 6-by-6 matrices and wish to create an animation (with player) and then place this animation and player on a tkinter figure canvas.
For placing the heatmap of a single matrix, M, on a tkinter canvas, my usual approach is as follows:
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from tkinter import Tk,TOP,BOTH
M=np.random.rand(6,6)
root=Tk()
root.geometry('1000x1000')
fig,ax=plt.subplots()
ax.imshow(M,aspect='auto',cmap='jet')
canvas = FigureCanvasTkAgg(fig, master=root)
canvas.draw()
canvas.get_tk_widget().pack(side=TOP,fill=BOTH,expand=1)
root.mainloop()
Now I made a simple change to the approach described at
Managing dynamic plotting in matplotlib Animation module
to create a matplotlib animation of heatplots for my list of matrices, labelled M_list:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import mpl_toolkits.axes_grid1
import matplotlib.widgets
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from tkinter import Tk,TOP,BOTH
root=Tk()
root.geometry('1000x1000')
class Player(FuncAnimation):
def __init__(self, fig, func, frames=None, init_func=None,
fargs=None,save_count=None, mini=0, maxi=100, pos=(0.125, 0.92), **kwargs):
self.i = 0
self.min=mini
self.max=maxi
self.runs = True
self.forwards = True
self.fig = fig
self.func = func
self.setup(pos)
FuncAnimation.__init__(self,self.fig, self.func, frames=self.play(),
init_func=init_func, fargs=fargs,
save_count=save_count, **kwargs )
def play(self):
while self.runs:
self.i = self.i+self.forwards-(not self.forwards)
if self.i > self.min and self.i < self.max:
yield self.i
else:
self.stop()
yield self.i
def start(self):
self.runs=True
self.event_source.start()
def stop(self, event=None):
self.runs = False
self.event_source.stop()
def forward(self, event=None):
self.forwards = True
self.start()
def backward(self, event=None):
self.forwards = False
self.start()
def oneforward(self, event=None):
self.forwards = True
self.onestep()
def onebackward(self, event=None):
self.forwards = False
self.onestep()
def onestep(self):
if self.i > self.min and self.i < self.max:
self.i = self.i+self.forwards-(not self.forwards)
elif self.i == self.min and self.forwards:
self.i+=1
elif self.i == self.max and not self.forwards:
self.i-=1
self.func(self.i)
self.fig.canvas.draw_idle()
def setup(self, pos):
playerax = self.fig.add_axes([pos[0],pos[1], 0.22, 0.04])
divider = mpl_toolkits.axes_grid1.make_axes_locatable(playerax)
bax = divider.append_axes("right", size="80%", pad=0.05)
sax = divider.append_axes("right", size="80%", pad=0.05)
fax = divider.append_axes("right", size="80%", pad=0.05)
ofax = divider.append_axes("right", size="100%", pad=0.05)
self.button_oneback = matplotlib.widgets.Button(playerax , label=u'$\u29CF$')
self.button_back = matplotlib.widgets.Button(bax, label=u'$\u25C0$')
self.button_stop = matplotlib.widgets.Button(sax, label=u'$\u25A0$')
self.button_forward = matplotlib.widgets.Button(fax, label=u'$\u25B6$')
self.button_oneforward = matplotlib.widgets.Button(ofax, label=u'$\u29D0$')
self.button_oneback.on_clicked(self.onebackward)
self.button_back.on_clicked(self.backward)
self.button_stop.on_clicked(self.stop)
self.button_forward.on_clicked(self.forward)
self.button_oneforward.on_clicked(self.oneforward)
fig, ax = plt.subplots()
num_times=50
M_list=[]
for t in range(num_times):
M_list.append(np.random.rand(6,6))
def update(i):
ax.imshow(M_list[i],aspect='auto',cmap='jet')
ani = Player(fig, update, maxi=num_times)
This works fine in terms animating the sequence of heatmaps stored in M_list (in a way that permits advancing a single frame at a time).
Now I'm stuck trying to place the matplotlib animation on my figure canvas. I tried placing the long block of code inside a tkinter root window:
root=Tk()
root.geometry
Use fig as defined in animation above.
canvas = FigureCanvasTkAgg(fig, master=root)
canvas.draw()
canvas.get_tk_widget().pack(side=TOP,fill=BOTH,expand=1)
root.mainloop()
This produced the error message:
Fatal Python error: PyEval_RestoreThread: the function must be called with the GIL
held, but the GIL is released (the current Python thread state is NULL)
Using Python 3.9 on a Mac with Big Sur.