I'm new to R, coding, and Stack Overflow: Apologies in advance if this is a basic question. I'm trying to combine the regression output for 3 levels of the variable "Gender" into a single summary table that retains all of the information from the columns as well as the values (residual error, r2, adjusted r2, F-statistic, p-value) listed at the bottom of each output. Is anyone aware of an approach that works?
Here is what my output currently looks like:
library(tidyverse)
Final_Frame.df <- read_csv("indirect.csv")
my.fun <- function(Final_Frame2.df){summary(lm(Product_Use~Mean_social_combined +
Mean_traditional_time+
Mean_Passive_Use_Updated+
Mean_Active_Use_Updated, data=Final_Frame.df))}
by(Final_Frame.df, list(Final_Frame.df$Gender), my.fun)
Output
Call:
lm(formula = Product_Use ~ Mean_social_combined + Mean_traditional_time +
Mean_Passive_Use_Updated + Mean_Active_Use_Updated, data = Final_Frame.df)
Residuals:
Min 1Q Median 3Q Max
-26.592 -8.178 -3.936 6.228 62.258
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5814 1.9664 -0.296 0.767612
Mean_social_combined 2.4961 1.1797 2.116 0.034906 *
Mean_traditional_time 1.0399 0.7416 1.402 0.161567
Mean_Passive_Use_Updated 2.8230 0.8308 3.398 0.000739 ***
Mean_Active_Use_Updated 2.7562 1.7421 1.582 0.114329
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 12.07 on 451 degrees of freedom
(18 observations deleted due to missingness)
Multiple R-squared: 0.1517, Adjusted R-squared: 0.1442
F-statistic: 20.17 on 4 and 451 DF, p-value: 2.703e-15
---------------------------------------------------------------------------------------------
: 2
Call:
lm(formula = Product_Use ~ Mean_social_combined + Mean_traditional_time +
Mean_Passive_Use_Updated + Mean_Active_Use_Updated, data = Final_Frame.df)
Residuals:
Min 1Q Median 3Q Max
-26.592 -8.178 -3.936 6.228 62.258
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5814 1.9664 -0.296 0.767612
Mean_social_combined 2.4961 1.1797 2.116 0.034906 *
Mean_traditional_time 1.0399 0.7416 1.402 0.161567
Mean_Passive_Use_Updated 2.8230 0.8308 3.398 0.000739 ***
Mean_Active_Use_Updated 2.7562 1.7421 1.582 0.114329
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 12.07 on 451 degrees of freedom
(18 observations deleted due to missingness)
Multiple R-squared: 0.1517, Adjusted R-squared: 0.1442
F-statistic: 20.17 on 4 and 451 DF, p-value: 2.703e-15
---------------------------------------------------------------------------------------------
: 3
Call:
lm(formula = Product_Use ~ Mean_social_combined + Mean_traditional_time +
Mean_Passive_Use_Updated + Mean_Active_Use_Updated, data = Final_Frame.df)
Residuals:
Min 1Q Median 3Q Max
-26.592 -8.178 -3.936 6.228 62.258
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5814 1.9664 -0.296 0.767612
Mean_social_combined 2.4961 1.1797 2.116 0.034906 *
Mean_traditional_time 1.0399 0.7416 1.402 0.161567
Mean_Passive_Use_Updated 2.8230 0.8308 3.398 0.000739 ***
Mean_Active_Use_Updated 2.7562 1.7421 1.582 0.114329
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 12.07 on 451 degrees of freedom
(18 observations deleted due to missingness)
Multiple R-squared: 0.1517, Adjusted R-squared: 0.1442
F-statistic: 20.17 on 4 and 451 DF, p-value: 2.703e-15