Looking for a simpler way of torch.tensor modification. Probably there is a way to apply Unfold to initial tensor directly.
input:
tensor([[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]])
output:
tensor([[0., 1., 3., 4.],
[1., 2., 4., 5.],
[3., 4., 6., 7.],
[4., 5., 7., 8.]])
possible solution:
import torch
t = torch.linspace(0., 8., steps=9)
t1 = t.reshape(3,3) # starting point
t2 = torch.flatten(t1)
t3 = t2.reshape(1, 1, 1, -1) # unfold works with 4D only
unfold = torch.nn.Unfold(kernel_size=(1, 5), dilation=1)
t4 = unfold(t3)
indices = torch.tensor([0, 1, 3, 4]) # deleting 3d (or middle) row and 3d (middle) column
t5 = torch.index_select(torch.index_select(t4.squeeze(), 0, indices), 1, indices)
t5