I am trying to using tf.multinomial to sample, and I want to get the associated probability value of the sampled values. Here is my example code,
In [1]: import tensorflow as tf
In [2]: tf.enable_eager_execution()
In [3]: probs = tf.constant([[0.5, 0.2, 0.1, 0.2], [0.6, 0.1, 0.1, 0.1]], dtype=tf.float32)
In [4]: idx = tf.multinomial(probs, 1)
In [5]: idx # print the indices
Out[5]:
<tf.Tensor: id=43, shape=(2, 1), dtype=int64, numpy=
array([[3],
[2]], dtype=int64)>
In [6]: probs[tf.range(probs.get_shape()[0], tf.squeeze(idx)]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-56ef51f84ca2> in <module>
----> 1 probs[tf.range(probs.get_shape()[0]), tf.squeeze(idx)]
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py in _slice_helper(tensor, slice_spec, var)
616 new_axis_mask |= (1 << index)
617 else:
--> 618 _check_index(s)
619 begin.append(s)
620 end.append(s + 1)
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py in _check_index(idx)
514 # TODO(slebedev): IndexError seems more appropriate here, but it
515 # will break `_slice_helper` contract.
--> 516 raise TypeError(_SLICE_TYPE_ERROR + ", got {!r}".format(idx))
517
518
TypeError: Only integers, slices (`:`), ellipsis (`...`), tf.newaxis (`None`) and scalar tf.int32/tf.int64 tensors are valid indices, got <tf.Tensor: id=7, shape=(2,), dtype=int32, numpy=array([3, 2])>
The expected result I want is [0.2, 0.1] as indicated by idx.
But in Numpy, this method works as answered in https://stackoverflow.com/a/23435869/5046896
How can I fix it?