4

How to convert non-numbers in DataFrame to NaN (numpy)? For example, here is a DataFrame:

a    b
--------
10   ...
4    5
...  6

How to covert it to:

a    b
--------
10   NaN
4    5
NaN  6
Usama Abdulrehman
  • 1,041
  • 3
  • 10
  • 20
Bing Qian
  • 89
  • 7
  • 1
    Should be marked as duplicate to http://stackoverflow.com/questions/18434208/pandas-converting-to-numeric-creating-nans-when-necessary – pansen Mar 27 '17 at 14:57

2 Answers2

10

IIUC you can just do

df = df.apply(lambda x: pd.to_numeric(x, errors='coerce') )

This will force the duff values to NaN, note that the presence of NaN will change the dtype to float as NaN cannot be represented by int

In [6]:
df = df.apply(pd.to_numeric, errors='coerce')
df

Out[6]:
      a    b
0  10.0  NaN
1   4.0  5.0
2   NaN  6.0

The lambda isn't necessary but it's more readable IMO

EdChum
  • 339,461
  • 188
  • 752
  • 538
4

You can can also stack then unstack the dataframe

pd.to_numeric(df.stack(), errors='coerce').unstack()

      a    b
0  10.0  NaN
1   4.0  5.0
2   NaN  6.0
piRSquared
  • 265,629
  • 48
  • 427
  • 571