Confused about random_state parameter, not sure why decision tree training needs some randomness. My thoughts, (1) is it related to random forest? (2) is it related to split training testing data set? If so, why not use training testing split method directly (http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html)?
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
>>> from sklearn.datasets import load_iris
>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.tree import DecisionTreeClassifier
>>> clf = DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> cross_val_score(clf, iris.data, iris.target, cv=10)
...
...
array([ 1. , 0.93..., 0.86..., 0.93..., 0.93...,
0.93..., 0.93..., 1. , 0.93..., 1. ])
regards, Lin