75

I have a pandas data frame like this:

   Column1  Column2  Column3  Column4  Column5
 0    a        1        2        3        4
 1    a        3        4        5
 2    b        6        7        8
 3    c        7        7        

What I want to do now is getting a new dataframe containing Column1 and a new columnA. This columnA should contain all values from columns 2 -(to) n (where n is the number of columns from Column2 to the end of the row) like this:

  Column1  ColumnA
0   a      1,2,3,4
1   a      3,4,5
2   b      6,7,8
3   c      7,7

How could I best approach this issue? Any advice would be helpful. Thanks in advance!

sequence_hard
  • 4,395
  • 9
  • 26
  • 49

3 Answers3

133

You can call apply pass axis=1 to apply row-wise, then convert the dtype to str and join:

In [153]:
df['ColumnA'] = df[df.columns[1:]].apply(
    lambda x: ','.join(x.dropna().astype(str)),
    axis=1
)
df

Out[153]:
  Column1  Column2  Column3  Column4  Column5  ColumnA
0       a        1        2        3        4  1,2,3,4
1       a        3        4        5      NaN    3,4,5
2       b        6        7        8      NaN    6,7,8
3       c        7        7      NaN      NaN      7,7

Here I call dropna to get rid of the NaN, however we need to cast again to int so we don't end up with floats as str.

EdChum
  • 339,461
  • 188
  • 752
  • 538
  • For some reason this doesnt work for me. I get duplicates. Therefore row 0 columnA is 1,2,3,4,1,2,3,4 – Sade Feb 09 '21 at 14:57
  • It seems like using iloc works for me. Theres no duplicates. df['ColumnA'] = df.iloc[:,source_col_loc+1:source_col_loc+4].apply( lambda x: ",".join(x.astype(str)), axis=1) – Sade Feb 09 '21 at 15:08
  • A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead – Kaustuv Mar 21 '21 at 14:02
15

I propose to use .assign

df2 = df.assign(ColumnA = df.Column2.astype(str) + ', ' + \
  df.Column3.astype(str) + ', ' df.Column4.astype(str) + ', ' \
  df.Column4.astype(str) + ', ' df.Column5.astype(str))

it's simple, maybe long but it worked for me

Derlin
  • 9,003
  • 2
  • 25
  • 47
Amin Salgado
  • 151
  • 1
  • 3
6

If you have lot of columns say - 1000 columns in dataframe and you want to merge few columns based on particular column name e.g. -Column2 in question and arbitrary no. of columns after that column (e.g. here 3 columns after 'Column2 inclusive of Column2 as OP asked).

We can get position of column using .get_loc() - as answered here

source_col_loc = df.columns.get_loc('Column2') # column position starts from 0

df['ColumnA'] = df.iloc[:,source_col_loc+1:source_col_loc+4].apply(
    lambda x: ",".join(x.astype(str)), axis=1)

df

Column1  Column2  Column3  Column4  Column5  ColumnA
0       a        1        2        3        4  1,2,3,4
1       a        3        4        5      NaN    3,4,5
2       b        6        7        8      NaN    6,7,8
3       c        7        7      NaN      NaN      7,7

To remove NaN, use .dropna() or .fillna()

Hope it helps!

Om Prakash
  • 2,433
  • 3
  • 25
  • 47