76

I have a dataframe, grouped, with multiindex columns as below:

import pandas as pd
codes = ["one","two","three"];
colours = ["black", "white"];
textures = ["soft", "hard"];
N= 100 # length of the dataframe
df = pd.DataFrame({ 'id' : range(1,N+1),
                    'weeks_elapsed' : [random.choice(range(1,25)) for i in range(1,N+1)],
                    'code' : [random.choice(codes) for i in range(1,N+1)],
                    'colour': [random.choice(colours) for i in range(1,N+1)],
                    'texture': [random.choice(textures) for i in range(1,N+1)],
                    'size': [random.randint(1,100) for i in range(1,N+1)],
                    'scaled_size': [random.randint(100,1000) for i in range(1,N+1)]
                   },  columns= ['id', 'weeks_elapsed', 'code','colour', 'texture', 'size', 'scaled_size'])
grouped = df.groupby(['code', 'colour']).agg( {'size': [np.sum, np.average, np.size, pd.Series.idxmax],'scaled_size': [np.sum, np.average, np.size, pd.Series.idxmax]}).reset_index()

>> grouped
    code colour     size                           scaled_size                         
                    sum    average  size  idxmax            sum    average  size  idxmax
0    one  black    1031  60.647059    17      81     185.153944  10.891408    17      47
1    one  white     481  37.000000    13      53     204.139249  15.703019    13      53
2  three  black     822  48.352941    17       6     123.269405   7.251141    17      31
3  three  white    1614  57.642857    28      50     285.638337  10.201369    28      37
4    two  black     523  58.111111     9      85      80.908912   8.989879     9      88
5    two  white     669  41.812500    16      78      82.098870   5.131179    16      78
[6 rows x 10 columns]

How can I flatten/merge the column index levels as: "Level1|Level2", e.g. size|sum, scaled_size|sum. etc? If this is not possible, is there a way to groupby() as I did above without creating multi-index columns?

Zhubarb
  • 9,913
  • 18
  • 70
  • 106

3 Answers3

143

There is potentially a better way, more pythonic way to flatten MultiIndex columns.

1. Use map and join with string column headers:

grouped.columns = grouped.columns.map('|'.join).str.strip('|')

print(grouped)

Output:

   code  colour   size|sum  size|average  size|size  size|idxmax  \
0    one   black       862     53.875000         16           14   
1    one   white       554     46.166667         12           18   
2  three   black       842     49.529412         17           90   
3  three   white       740     56.923077         13           97   
4    two   black      1541     61.640000         25           50   

   scaled_size|sum  scaled_size|average  scaled_size|size  scaled_size|idxmax  
0             6980           436.250000                16                  77  
1             6101           508.416667                12                  13  
2             7889           464.058824                17                  64  
3             6329           486.846154                13                  73  
4            12809           512.360000                25                  23  

2. Use map with format for column headers that have numeric data types.

grouped.columns = grouped.columns.map('{0[0]}|{0[1]}'.format) 

Output:

   code| colour|  size|sum  size|average  size|size  size|idxmax  \
0    one   black       734     52.428571         14           30   
1    one   white      1110     65.294118         17           88   
2  three   black       930     51.666667         18            3   
3  three   white      1140     51.818182         22           20   
4    two   black       656     38.588235         17           77   
5    two   white       704     58.666667         12           17   

   scaled_size|sum  scaled_size|average  scaled_size|size  scaled_size|idxmax  
0             8229           587.785714                14                  57  
1             8781           516.529412                17                  73  
2            10743           596.833333                18                  21  
3            10240           465.454545                22                  26  
4             9982           587.176471                17                  16  
5             6537           544.750000                12                  49 

3. Use list comprehension with f-string for Python 3.6+:

grouped.columns = [f'{i}|{j}' if j != '' else f'{i}' for i,j in grouped.columns]

Output:

    code colour  size|sum  size|average  size|size  size|idxmax  \
0    one  black      1003     43.608696         23           76   
1    one  white      1255     59.761905         21           66   
2  three  black       777     45.705882         17           39   
3  three  white       630     52.500000         12           23   
4    two  black       823     54.866667         15           33   
5    two  white       491     40.916667         12           64   

   scaled_size|sum  scaled_size|average  scaled_size|size  scaled_size|idxmax  
0            12532           544.869565                23                  27  
1            13223           629.666667                21                  13  
2             8615           506.764706                17                  92  
3             6101           508.416667                12                  43  
4             7661           510.733333                15                  42  
5             6143           511.916667                12                  49  
Hugolmn
  • 1,430
  • 1
  • 5
  • 19
Scott Boston
  • 133,446
  • 13
  • 126
  • 161
  • it doesn't work when you have numeric columns `MultiIndex(levels=[[u'col_a', u'col_b', u'col_c'], [7950230.0, 12304568.0]], labels=[[0, 0, 1], [0, 1, 1]], names=[lev, sublev'])` it returns `TypeError: sequence item 1: expected string, float found` – Pablo Aug 24 '17 at 14:48
  • @PabloA grouped.columns.map('{0[0]} | {0[1]}'.format) – Scott Boston Aug 24 '17 at 14:50
  • 1
    brief update, as of at least v0.23, there's a `set_axis` method you can use: `renamed = df.set_axis(['|'.join(c) for c in df.columns], axis='columns', inplace=False)` – Paul H Dec 18 '18 at 15:44
  • (and `axis='index'` would achieve similar results along multi-indexed rows) – Paul H Dec 18 '18 at 15:45
  • To deal with numeric labels, I'm pretty sure `df.columns = df.columns.map(lambda tup: '|'.join(map(str, tup)))` would work – BallpointBen Jan 02 '19 at 23:17
  • 1
    Hi Man Adjust this one `grouped.columns.map('|'.join).str.strip('|')` , BTW I think this should be the accepted answer – BENY Jan 31 '19 at 22:58
  • It seems no differences btw `.map().str.strip()` & `.map()` after a test. – Sean.H Apr 15 '22 at 10:57
  • @SeanH .strip('|') to strip off that last | on the end of code and colour where there is no second level. – Scott Boston Apr 15 '22 at 14:28
42

you could always change the columns:

grouped.columns = ['%s%s' % (a, '|%s' % b if b else '') for a, b in grouped.columns]
acushner
  • 8,972
  • 1
  • 32
  • 32
  • 1
    if one of the columns in level 1 is equal to `0`, then the above expression will ignore it here :`b if b else ''`. Instead, I used `b != ''`, so `grouped.columns = ['%s%s' % (a, '|%s' % b if b != '' else '') for a, b in grouped.columns]`. This might be useful after using `groupby` which enumerates columns with numbers starting from 0. – toto_tico Jul 10 '17 at 14:25
  • 1
    there would be a problem with `None`s in that, so you'd have to do `if (b == 0 or b)`, but still a good call – acushner Jul 10 '17 at 14:35
  • @acusher, you right, though `if b is not None` should the simple way of expressing it... – toto_tico Jul 11 '17 at 07:34
12

Based on Scott Boston's answer, little update(it will be work for 2 or more levels column):

temp.columns.map(lambda x: '|'.join([str(i) for i in x]))

Thank you, Boston!

Ningrong Ye
  • 961
  • 10
  • 10