The «full» quote shows what is wrong!
The decimal module is indeed following the proprietary (IBM) Decimal Arithmetic Specification.
Quoting this IBM specification in its entirety clearly shows what is wrong with decimal.to_eng_string() (emphasis added):
to-engineering-string – conversion to numeric string
This operation converts a number to a string, using engineering
notation if an exponent is needed.
The conversion exactly follows the rules for conversion to scientific
numeric string except in the case of finite numbers where exponential
notation is used. In this case, the converted exponent is adjusted to be a multiple of three (engineering notation) by positioning the decimal point with one, two, or three characters preceding it (that is, the part before the decimal point will range from 1 through 999). This may require the addition of either one or two trailing zeros.
If after the adjustment the decimal point would not be followed by a digit then it is not added. If the final exponent is zero then no indicator letter and exponent is suffixed.
This proprietary IBM specification actually admits to not applying the engineering notation for numbers with an infinite decimal representation, for which ordinary scientific notation is used instead! This is obviously incorrect behaviour for which a Python bug report was opened.
Solution
from math import floor, log10
def powerise10(x):
""" Returns x as a*10**b with 0 <= a < 10
"""
if x == 0: return 0,0
Neg = x < 0
if Neg: x = -x
a = 1.0 * x / 10**(floor(log10(x)))
b = int(floor(log10(x)))
if Neg: a = -a
return a,b
def eng(x):
"""Return a string representing x in an engineer friendly notation"""
a,b = powerise10(x)
if -3 < b < 3: return "%.4g" % x
a = a * 10**(b % 3)
b = b - b % 3
return "%.4gE%s" % (a,b)
Source: https://code.activestate.com/recipes/578238-engineering-notation/
Test result
>>> eng(0.0001)
100E-6