I need to solve a non-linear set of three equations using scipy.
However, I do not have any clue on which algorithm is suitable for my problem from a mathematical point of view (stability, convergence behaviour), since scipy provides a huge variety of different algorithms in the scipy.optimize module such as:
Here is my non-linear set (two linear, and a non-linear) of equations with 3 unknown variables:
$$ Q(t_k)=m_Sc_S\left(\vartheta_S(t_k)-\vartheta_S(t_{k-1})\right)\\ Q(t_k)=\dot{m}_Gc_{pG}\big(\vartheta_{GE}-\vartheta_{GA}(t_{k})\big)\Delta t\\ Q(t_k)=A\alpha\frac{\big(\vartheta_S(t_k)-\vartheta_{GE}\big)-\big(\vartheta_S(t_k)-\vartheta_{GA}(t_k)\big)}{\ln{\left(\frac{\vartheta_S(t_k)-\vartheta_{GE}}{\vartheta_S(t_k)-\vartheta_GA(t_k)}\right)}}\Delta t $$
where unknown variables are:
- $\vartheta_S(t_k)$
- $\vartheta_{GA}(t_k)$
- $Q(t_k)$
and
- $m_S = 6.868\,\mathrm{kg}$
- $\dot{m}_G = 0.007\,\mathrm{kg/s}$
- $c_S = 500\,\mathrm{J/kg K}$
- $c_{pG} = 1005\,\mathrm{J/kg K}$
- $\vartheta_S(0) = 273\,\mathrm{K}$
- $\vartheta_{GA}(0) = 293\,\mathrm{K}$
- $\vartheta_{GE} = 353\,\mathrm{K}$
- $A = 3.733\,\mathrm{m}^2$
- $\alpha = 99\,\mathrm{W/m}^2\mathrm{K}$
- $\Delta t = t_k-t_{k-1} = 1\,\mathrm{s}$
Which algorithm is probably the best one for my problem?