Let $M(h)$ be the moment-generating function, then the cumulant generating function is given by
$$K(h)=\text{ln}M(h)=\\ =\kappa_1h+\frac{1}{2!}h^2\kappa_2+\frac{1}{3!}h^3\kappa_3+\ldots$$ where $\kappa_1, \kappa_2, \ldots$, are the cumulants.
If $L=\sum_{j=1}^Nc_jx_j$ is a function of $N$ independent variables, then the cumulant-generating function for $L$ is given by $$ K(h)=\sum_{j=1}^NK_j(c_jh). $$