I'll give it a try, but am not yet 100% sure that it's the way to go.
Ansatz:
Let's find the distribution of the integral of a Brownian motion with respect to time (call it $x$) and find the expectation of the product of two such integrals $x$ and $y$. Then, calculate the covariance as $Cov(x,y)=E(xy)-E(x)E(y)$.
1. Distribution of $I(t,T)\equiv\int\limits_{s=t}^{T}W_s\mathrm{d}s$
From this answer, we know that
$$
I(t,T)\equiv \int\limits_{s=t}^{T}W_s\mathrm{d}s=\int\limits_{s=t}^{T}(T-s)dW_s
$$
and that $I(t,T)$ is normally distributed with
$$I(t,T)\sim \mathrm{N}\left(0,\frac{1}{3}(T-t)^3\right)$$
2. Expectation of $I(t,T)I(t,U)$
By the same way of reasoning (and some weak recollection of Iso isometry, I'd argue:
$$
\begin{align}
\mathrm{E}\left(I(t,T)I(t,U)\right)&=\mathrm{E}\left(\int\limits_{s=t}^{T}(T-s)\mathrm{d}W_s\int\limits_{x=t}^{U}(U-x)\mathrm{d}W_x\right)\\
&=\mathrm{E}\left(\int\limits_{s=t}^{T}\int\limits_{x=t}^{U}(T-s)(U-x)\mathrm{d}W_s\mathrm{d}W_x\right)\\
&=\int\limits_{s=t}^{T}\int\limits_{x=t}^{U}(T-s)(U-x)\mathrm{E}\left(\mathrm{d}W_s\mathrm{d}W_x\right)\\
&=\int\limits_{s=t}^{U}(U-s)^2\rho\mathrm{d}t\\
&=\frac{1}{3}(U-t)^3
\end{align}
$$
N.B.: we assume $U\leq T$.
3. $I(t,T)$ and $I(t,U)$ are bivariate normally distributed
Let's simplify and let $x_1\equiv I(t,T)$, $x_2\equiv I(t,U)$ and $\mathbf{x}=\left(x_1,x_2\right)^T$, also let $\sigma_1^2=\frac{1}{3}(T-t)^3$, $\sigma_2^2=\frac{1}{3}(U-t)^3$ and $\sigma_{1,2}=\frac{1}{3}\rho (U-t)^3$. Then $\mathbf{x}$ is bivariate normally distributed as
$$
\mathbf{x}\equiv\begin{pmatrix}x_1\\x_2\end{pmatrix}\sim \mathrm{N}\left(\mathbf{0},\begin{pmatrix}\sigma_1^2 & \sigma_{1,2}\\ \sigma_{1,2} & \sigma_2^2\end{pmatrix}\right)
$$
Now let's use a little trick I learned just recently. Given a real vector $\mathbf{t}$, the MGF of the multivariate normal distribution is defined as $\varphi_X(t)\equiv\mathrm{E}\left(e^{\mathbf{t}^T\mathbf{x}}\right)=e^{\mathbf{t}^T\mathbf{\mu}+\frac{1}{2}\mathbf{t}^T\mathbf{\Sigma}\mathbf{t}}$ and, in our case, this is
$$
\varphi(t_1,t_2)=\mathrm{E}\left(e^{t_1x_1+t_2x_2}\right)=e^{\frac{1}{2}t_1^2\sigma_1^2+\frac{1}{2}t_2^2\sigma_2^2+t_1t_2\sigma_{1,2}}
$$
Note that
$$
\left.\frac{\partial \left(e^{x+ty}\right)}{\partial t}\right|_{t=0}=ye^x
$$
thus,
$$
\begin{align}
\mathrm{E}\left(e^{I(t,T)}I(t,U)\right)&=\mathrm{E}\left(e^{x_1}x_2\right)\\
&=\left.\frac{\partial \varphi(t_1=1,t_2)}{\partial t_2}\right|_{t_2=0}\\
&=e^{\frac{1}{2}\sigma_1^2}\sigma_{1,2}\\
&=\frac{1}{3}\rho(U-t)^3e^{\frac{1}{6}(T-t)^3}
\end{align}$$
5. Putting all together
Thus, for Brownian motions $W^1_t, W_2^t$ with $dW_1dW_2=\rho dt$
$$
\begin{align}
\mathrm{Cov}\left(e^{\int\limits_{s=t}^TW^1_s\mathrm{d}s}\int\limits_{x=t}^UW^2_x\mathrm{d}x\right)&=\mathrm{E}\left(e^{x_1}x_2\right)-\mathrm{E}\left(e^{x_1}\right)\mathrm{E}(x_2)\\
&=\mathrm{E}\left(e^{x_1}x_2\right)\\
&=1/3\rho(U-t)^3e^{\frac{1}{6}(T-t)^3}
\end{align}
$$