- Let's use the following expression (derived in Quantuple's answer in your link), which will help us tidy up the product using Ito's Isometry
\begin{align}
\int^t_0 W^2_s ds = 2 \int^t_0 (t-s)W_s dW_s + {\frac {t^2} 2}
\end{align}
Now looking at the expectation
\begin{align}
{\mathbb E}\Bigl[ \int^t_0 W^3_s dW_s \cdot \int^t_0 W^2_s ds \Bigr] &= {\mathbb E}\Bigl[ \int^t_0 W^3_s dW_s \cdot \Bigl( 2 \int^t_0 (t-s)W_s dW_s + {\frac {t^2} 2} \Bigr) \Bigr] \\
&= {\mathbb E}\Bigl[ {\frac {t^2} 2}\int^t_0 W^3_s dW_s + 2 \int^t_0 W^3_s dW_s \cdot \int^t_0 (t-s)W_s dW_s \Bigr]
\end{align}
As you identified above, the expectation of the first term in the sum is $0$, and we can use Ito's Isometry on the second
\begin{align}
{\mathbb E}\Bigl[ \int^t_0 W^3_s dW_s \cdot \int^t_0 W^2_s ds \Bigr] &= 0 + {\mathbb E}\Bigl[ 2 \int^t_0 (t-s) W^4_s ds \Bigr] \\
&= 2 \int^t_0 (t-s) {\mathbb E}\bigl[ W^4_s \bigr] ds \\
&= 2 \int^t_0 (t-s) 3s^2 ds \\
&= {\frac 1 2} t^4 \\
\end{align}
In the initial question, the expression has multiplicative prefactors of $2$, $4$ and $6$, so this multiplies out to $24t^4$
In the above, I used the expression ${\mathbb E}\bigl[ W^4_s \bigr] = 3s^2$, which comes from the step-down formula given in the question you linked, ie.
\begin{align}
{\mathbb E}\bigl[ W^{2n}_t \bigr] = {\frac {(2n)!} {2^n n!}} t^n
\end{align}
This can be solved using the same step-down formula
\begin{align}
\int^t_0 {\mathbb E} \bigl[ W^6_s \bigr] ds &= \int^t_0 {\frac {6!} {2^3 3!}} s^3 ds\\
&= 15 \Bigl[ {\frac 1 4} s^4 \Bigr]^t_0\\
&= {\frac {15} 4} t^4
\end{align}
Limits of the Fubini double integral
\begin{align}
\int_0^t \int^s_0 W_u dW_u ds = \int_0^t \int^t_u W_u ds dW_u
\end{align}
This change of limits is required so that the double integral is integrating over the same part of the $(s,u)$ space, as shown in the diagram

Basically, we can parameterise the lower triangle either by letting $u$ run from $0$ to $s$, and then letting $s$ run from $0$ to $t$, or if we switch the order we need to let $s$ run from $u$ to $t$ and then let $u$ run from $0$ to $t$