Let $r$ a random process defined by :
$$dr_t=\theta(t)dt + \sigma dW_t$$
$\theta$ is deterministic in $t$ and $W$ a brownian motion.
I don't know where my calculation below is going wrong :
Let $R=\int r(s)ds$
then : $$\frac{d}{dt}\mathop{\mathbb{E}}\left[ e^{-\int_t^Tr(s)ds}|\mathscr{F}_t \right] = \mathop{\mathbb{E}}\left[ \frac{d}{dt} e^{-(R_T - R_t)}|\mathscr{F}_t \right] = \mathop{\mathbb{E}}\left[ r(t) e^{-(R_T - R_t)}|\mathscr{F}_t \right] = r(t) \mathop{\mathbb{E}}\left[ e^{-\int_t^Tr(s)ds}|\mathscr{F}_t \right]$$
But regarding this question Bond dynamics in Ho Lee model my computation is not correct
Any help please?