Given the price of a call option :
$$C = \mathbb{E}\left[ D_{0,T} (s-K)1_{s>K} |\mathcal{F_0}\right] $$
with $D_{0,T}=e^{-\int_0^Tr(u)du}$
I read somewhere that applying Itô gives :
$$dC = \mathbb{E} \left[d D_{0,T} (s-K)1_{s>K} |\mathcal{F_0}\right] $$
$$dC = \mathbb{E} \left[ \frac{dD_{0,T}}{dT} (S_T-K) 1_{S_T>K} dT+ D_{0,T} \frac{d}{ds} \left[ (s-K)1_{s>K} \right] \biggr\rvert_{s=S_T} dS_T + D_{0,T}\frac{1}{2}\frac{d^2}{ds^2} \left[ (s-K)1_{s>K} \right] \biggr\rvert_{s=S_T} dS_T dS_T |\mathcal{F_0}\right] $$
My questions are :
1) Why the $d$ can be placed inside the $\mathbb{E} $? I mean why does this hold ? :
$$d\int D_{0,T}(s-K)1_{s>K}\phi_{S_T}(s)ds=\int d \left[ D_{0,T}(s-K)1_{s>K}\phi_{S_T}(s)\right]ds$$
2) when I look at this term : $D_{0,T} \frac{d}{ds} \left[ (s-K)1_{s>K} \right] \biggr\rvert_{s=S_T} dS_T$ I don't know where it comes from, because for me when I do apply Itô I get :
$$\int d \left[ D_{0,T}(s-K)1_{s>K}\phi_{S_T}(s)\right]ds = \int \left[ (...)dT+\frac{d}{ds}\left[ D_{0,T}(s-K)1_{s>K}\phi_{S_T}(s) \right]dS_T+\frac{1}{2}(...)dS_TdS_T \right] ds$$
focusing on the $\int \left[ \frac{d}{ds}\left[ D_{0,T}(s-K)1_{s>K}\phi_{S_T}(s) \right]dS_T \right] ds$ part I get :
$$\int \left[ \frac{d}{ds}\left[ D_{0,T}(s-K)1_{s>K}\phi_{S_T}(s) \right]dS_T \right] ds =\int D_{0,T} \left[ \frac{d}{ds}\left[ (s-K)1_{s>K}\phi_{S_T}(s) \right]dS_T \right] ds \mathbf{\mathbin{\color{red}\neq}} \int D_{0,T} \phi_{S_T}(s) \left[ \frac{d}{ds}\left[ (s-K)1_{s>K} \right]dS_T \right] ds = \mathbb{E}\left[ D_{0,T}\frac{d}{ds}\left[ (s-K)1_{s>K} \right]dS_T \right] $$
any help on this ?
3) isn't $T$ constant? maturity of the call option. Why do we find $dT$ in Itô as if it were the current time $t$ ? if we applied Itô to $C_t$ or $C(t,S_t)$ we would certainly find a $dt$ term and not a $dT$ one !