Let $\mathcal {V} =\mathcal {V}(t,T)$ be the class of functions
$$f(t,\omega):[0,\infty)\times\Omega\to\mathbb{R}$$
such that
- $(t,\omega)\to f(t,\omega)$ is $\mathcal{B}\times\mathcal{F}$ where $\mathcal{B}$ denotes the Borel algebra on $[0,\infty)$.
- $f(t,\omega)$ is $\mathcal{F}_t$ adapted.
- $\mathbb{E}\left[\int_{t}^{T}f^2(s,\omega)ds\right]<\infty$
Suppose $f\in\mathcal V(t,T)$ and that $t\to f(t,\omega)$ is continuous . Let $I=\{u_i\}_{i=0}^{n}$ is a sequence of partitions of $[t,T]$, Indeed $t=u_0<u_1<\cdots<u_n=T$ .By definition of Ito integral, we have
$$\int\limits_t^T f(u,\omega)dW(u,\omega)=\lim_{\Delta u_j\to0}\sum_{j=0}^{n-1}f(u_j,\omega)(\,W(u_{j+1},\omega)-W(u_{j},\omega)\,)\qquad,\quad\text{ in }\, L^2(P).$$
Similarly we define the Stratonovich integral of $f$ by
$$\int\limits_t^T f(s,\omega)\circ dW(u,\omega)=\lim_{\Delta u_j\to0}\sum_{j=0}^{n-1}f(u_j^*,\omega)(\,W(u_{j+1},\omega)-W(u_{j},\omega)\,)$$
where $u_j^*=\frac12(u_j+u_{j+1}),$ whenever the limit exists in $L^2(P)$. In general these integrals are different.
I think the value of cash flow for a future of discrete case is
$$\dfrac{1}{D(t)}\mathbb{E}\left[\sum\limits_{j=k}^{n-1}D(t_{j})(\,\textrm{Fut}_S(t_{j+1},T)-\textrm{Fut}_S(t_j,T)\,)\Big|\mathcal{F}_t\right]$$
thus the continuous version is
$$\dfrac{1}{D(t)}\mathbb{E}\Big[\int_t^T D(u)\textrm{d} \textrm{Fut}_S(u,T) \Big|\mathcal{F}(t)\Big]$$