Other Way
$$\mathbb{E}\left[ \,{{e}^{iuB_t}} \right]=\exp \left( iu\,\mathbb{E}\left[ B_t \right]+\frac{1}{2}{{(\,iu\,)}^{2}}\operatorname{Var}(B_t\,) \right)={\exp \left( -\frac{1}{2}{{u}^{2}}t \right)}$$
We know
$$\mathbb{E}\left[{{e}^{iuB_t}} \right]=E\left[1+iuB_t-\frac{1}{2\,!}{{u}^{2}}{{B_t}^{2}}-\frac{1}{3\,!}i{{u}^{3}}{{B_t}^{3}}+\frac{1}{4\,!}{{u}^{4}}{{B_t}^{4}}+\cdots \right]$$
therefore
$${\exp \left( -\frac{1}{2}{{u}^{2}}t \right)}=1+iu\mathbb{E}\left[ B_t \right]-\color{green}{\frac{1}{2!}{{u}^{2}}\mathbb{E}\left[ {{B_t}^{2}} \right]}-\frac{1}{3!}i{{u}^{3}}E\left[ {{B_t}^{3}}\right]+\color{red}{\frac{1}{4!}{{u}^{4}}\mathbb{E}\left[ {{B_t}^{4}} \right]}+\cdots \tag1$$
On the other hand
$$\exp \left( -\frac{1}{2}{{u}^{2}}t \right)=1-\color{green}{\frac{1}{2}\,{{u}^{2}}t}+\color{red}{\frac{1}{2!}\left( \frac{1}{4}{{u}^{4}}{{t}^{2}} \right)}-\frac{1}{3 !}\left( \frac{1}{8}{{u}^{6}}{{t}^{3}} \right)+\frac{1}{4 !}\left( \frac{1}{16}{{u}^{8}}{{t}^{4}} \right)-\cdots\tag2 $$
$(1)$ and $(2)$
$$\frac{1}{4!}{{u}^{4}}\mathbb{E}\left[ {{B_t}^{4}} \right]=\frac{1}{2 !}\left( \frac{1}{4}{{u}^{4}}{{t}^{2}} \right)$$
thus
$$\mathbb{E}\left[ {{B_t}^{4}} \right]=3t^2$$
Generally, we have
$$\left\{ \begin{align} & E\left[ {{B}^{2n+1}}(t)
\right]=0\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\ & \quad E\left[
{{B}^{2n}}(t) \right]=\frac{(2n)!}{{{2}^{n}}n\,!}\,{{t}^{n}} \\
\end{align} \right.$$