I have following exercise:
This is what I did:
\begin{align} C(K)&= e^{-r\tau} \mathbb{E}^\mathbb{Q}[((S_T - K)^+] \\ &= e^{-r\tau}\mathbb{E}^\mathbb{Q}[((S_T - K)\mathbb{1}_{S_T>K}] \\ &=e^{-r\tau}\mathbb{E}^\mathbb{Q}[S_T \mathbb{1}_{S_T>K}]-Ke^{-r\tau}\mathbb{E}^\mathbb{Q}[\mathbb{1}_{S_T>K}] \end{align}
by$ \mathbb{1}$ I mean indicator function. Now I understand that $$ \mathbb{E}^\mathbb{Q}[\mathbb{1}_{S_T>K}] = \mathbb{Q}(S_T>K) $$
however I don't know how to deal with $$\mathbb{E}^\mathbb{Q}[S_T \mathbb{1}_{S_T>K}]$$
is this the right way how to solve this exercise?
