Well, I believe I've found your beautiful BEE! Sorry for being so clumsy!
. . . . . . . .
. . . E . . . .
. . . . . . E .
. . . . . . . E
. . E . . . E .
/-
. . . .|.|. . .
| |
. . . .|.|. . .
| |
. . . .|E|. . .
-/
(going down)
Explanation:
First, the X can't be a B because of the following chain of deductions where all the numbers are E:
. . . . . . . .
. . . E 7 X . .
. . . . 6 . E .
. . . . 5 . . E
. . E . 4 . E .
. . . . 3 1 . .
. . . . 2 . . .
. . . . E . . .
Then the X here can't be a B for almost the same reason:
. . . . X . . .
. . . E 7 E . .
. . . . 6 . E .
. . . . 5 . . E
. . E . 4 . E .
. . . . 3 1 . .
. . . . 2 . . .
. . . . E . . .
The X here can't be a B because of the ! - it can't be a B because of !41 but neither can it be an E because of X!4:
. . . . E . . .
. . . E . E . .
. . X . . . E .
. . . ! . . . E
. . E . 4 . E .
. . . . 3 1 . .
. . . . 2 . . .
. . . . E . . .
The X can't be a B here because of the ! - if the ! is a B then !31 is a BEE, but if not XE! is a BEE:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. X . . . . . E
. . E . . . E .
. . . ! 3 1 . .
. . . . 2 . . .
. . . . E . . .
Now, if X was a B here, we'd have this, and the same argument applies to the space marked 1:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E . . . E .
. . . X 3 1 . .
. . . . 2 . . .
. . . . E . . .
Obviously the space marked X can't be B here:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E . . . E .
. . . E + E . .
. . . . X . . .
. . . . E . . .
Now, if the spot + in the above diagram were not to be a B, then either:
the 6th row is all Es, or the BEE is on the 6th row
So case bashing assuming Y is a B, we have:
- Here and in its mirror image across the
EEX line, 1 through 6 are all Bs, and then we have a BEE at 6EX:
. . . . E . . .
. . 4 E 3 E 2 .
. . E . . . E .
. E 5 . . . 1 E
. . E . . . E .
. . 6 E X E Y .
. . . . E . . .
. . . . E . . .
- Here and in its mirror image across the
EEX! line, the 1 is a B, but then we have a BEE at either 1!E or !XE:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . 1 . E
. . E . ! . E .
. . E E X E E Y
. . . . E . . .
. . . . E . . .
- Finally, here,
1 has to be an E, so Z has to be a B, so one of ZE! and !EE is a B
. . . . E . . .
. . . E . E . .
. . E . . . E .
Z E ! . . . . E
1 . E . . . E .
Y E E E X E E E
. . . . E . . .
. . . . E . . .
- So then we must have the following:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E . . . E .
E E E E E E E E
. . . . E . . .
. . . . E . . .
- From here, we need to check the fifth line. Assume that the line has a
B. Then:
- If the
X is a B, the 1 is a B, leading to a BEE going up from the 1:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E . X . E .
E E E E E E E E
. . . . E . 1 .
. . . . E . . .
- If the
X is a B and the Y is an E, we can chase Bs around with numbers to get 2EY as a BEE. The same applies with the mirror image around the EEEE line (we can ignore the stray E)
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E Y E X E .
E E E E E E E E
. . . 2 E 1 . .
. . . . E . . .
- If both the
X and the Y are Bs, in the following series of diagrams the Z shows a place that can't be an E because the ! would result in a contradiction of YE! and !EZ:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E X E Y E .
E E E E E E E E
. . . ! E Z . .
. . . . E . . .
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E X E Y E .
E E E E E E E E
. . . Z E ! . .
. . . . E . . .
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E X E Y E Z
E E E E E E E E
. . . . E ! . .
. . . . E . . .
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. Z E X E Y E .
E E E E E E E E
. . . ! E . . .
. . . . E . . .
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. ! E X E Y E .
E E E E E E E E
. Z . . E . . .
. . . . E . . .
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E X E Y E !
E E E E E E E E
. . . . E . . Z
. . . . E . . .
- So we've got quite a few squares that must now be
B:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
- So now we can consider the
Zs to be Es in the following diagrams, and chase the Es around with numbers to get another B:
. . . 3 E 2 . .
. . . E . E . .
. 5 E 4 . 1 E Z
. E . . . . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
. . . 2 E 1 . .
. . . E . E . .
. 4 E 3 . Z E B
. E . . . . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
. . . 1 E Z . .
. . . E . E . .
. 3 E 2 . B E B
. E . . . . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
. . . Z E B . .
. . . E . E . .
. 2 E 1 . B E B
. E . . . . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
. . . B E B . .
. . . E . E . .
. 1 E Z . B E B
. E . . . . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
. . . B E B . .
. . . E . E . .
. Z E B . B E B
. E . . . . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
- Now the
XYZ must all be Es because if one of them were a B, the other two would be E and we would have two BEEs:
. . . B E B . .
. . . E . E . .
. B E B . B E B
. E X Y Z . . E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
. . . B E B . .
. . . E . E . .
. B E B . B E B
. E E E X Y Z E
. B E B E B E B
E E E E E E E E
. B . B E B . B
. . . . E . . .
- If any of
XYZ were a B, we would have multiple BEEs.
. . . B E B . .
. . . E . E . .
. B E B X B E B
. E E E E E E E
. B E B E B E B
E E E E E E E E
. B Y B E B Z B
. . . . E . . .
- If any of
XYZ were a B, all three would have to be, and there would be three BEEs:
. . . B E B . .
. . X E Y E Z .
. B E B E B E B
. E E E E E E E
. B E B E B E B
E E E E E E E E
. B E B E B E B
. . . . E . . .
- If any of
WXYZ were Bs, we would have multiple Bs:
. . X B E B Y .
. W E E E E E Z
. B E B E B E B
. E E E E E E E
. B E B E B E B
E E E E E E E E
. B E B E B E B
. . . . E . . .
- If
X or Y were Es, we would have two BEEs:
. X E B E B E Y
. E E E E E E E
. B E B E B E B
. E E E E E E E
. B E B E B E B
E E E E E E E E
. B E B E B E B
. . . . E . . .
WXYZ must all be Es otherwise we would have multiple BEEs:
. B E B E B E B
. E E E E E E E
W B E B E B E B
. E E E E E E E
X B E B E B E B
E E E E E E E E
. B E B E B E B
. . . Y E Z . .
VWXYZ must be Es for the same reason:
. B E B E B E B
V E E E E E E E
E B E B E B E B
W E E E E E E E
E B E B E B E B
E E E E E E E E
X B E B E B E B
. . Y E E E Z .
- Now
XYZ must be Es for the same reason. Finally, we have W also being E for the same reason again. But then there are NO BEEs in the grid:
X B E B E B E B
E E E E E E E E
E B E B E B E B
E E E E E E E E
E B E B E B E B
E E E E E E E E
E B E B E B E B
W Y E E E E E Z
- Phew! So now we know this must be the case (where we are assuming the lowercase
e is not a B):
. . . . E . . .
. . . E . E . .
. . E . . . E
. E . . . . . E
. . E E E E E .
E E E E e E E E
. . . . E . . .
. . . . E . . .
- Now if the
X was a B, the Y must be a B leading to multiple BEEs. The same argument applies reflected in the EEEE line (ignoring the stray E):
. . . . E . . .
. . . E . E . .
. . E . . . E
. E . . . . . E
. X E E E E E .
E E E E E E E E
. . . Y E . . .
. . . . E . . .
- Finally, the
X cannot be an E otherwise we would have two BEEs:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
X E E E E E E E
E E E E E E E E
. . . . E . . .
. . . . E . . .
- So our second assumption was wrong, and the fifth row must then consist of all
Es. Now any square marked by a # must be an E because otherwise we have multiple BEEs:
. . . . E . . .
. . . E . E . .
. . E . . . E .
# E # # # # # E
E E E E E E E E
E E E E E E E E
# # # # E # # #
. . . . E . . .
. . . . E . . .
. . . E . E . .
# # E # # # E #
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
# # # # E # # #
. . . . E . . .
# # # E # E # #
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
- And one last time... well, obviously there aren't any
BEEs in here:
# # # # E # # #
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
So then our initial assumption must be wrong, and we have this, with a BEE already in there:
. . . . E . . .
. . . E . E . .
. . E . . . E .
. E . . . . . E
. . E . . . E .
. . . E B E . .
. . . . E . . .
. . . . E . . .
So there's the BEE!