I'll use the diagram below while I'm solving this:

Let the radius of the larger circle equal $r$.
First, the area of the red section ($A_\mathrm{red}$). This can be found by using the formula for the area of a segment of a circle, $$A=\frac{r^2}{2}(\theta-\sin\theta),$$ where $\theta$ is in radians. In this case, $\theta=120^\circ = \frac{2\pi}{3} \mathrm{radians}$. So, plugging in, the area of the red sector is
$$
\begin{align*}
A_\mathrm{red}&=\frac{r^2}{2} \left( \frac{2\pi}{3}-\sin\frac{2\pi}{3} \right) \\
&= \frac{r^2}{2} \left( \frac{2\pi}{3}-\frac{\sqrt3}{2} \right) \\
A_\mathrm{red}&=\left(\frac{\pi}{3}-\frac{\sqrt3}{4}\right)r^2.
\end{align*}
$$
Second, the area of the purple circle ($A_\mathrm{purple}$). This is rather simple; if the radius of the larger circle $OA = r$, then the radius of the purple circle $OD = \frac{r}{2}$, since $\triangle ODA$ is a 30-60-90 right triangle. Thus the area of the purple circle is $A_\mathrm{purple}=\pi \left(\frac{r}{2}\right)^2 = \frac14\pi r^2$.
Lastly, the area of the green section ($A_\mathrm{green}$). We know that $AD = \frac{\sqrt{3}}{2}r$ and $CD = \frac32 r$, thus the area of $\triangle ABC$ is $\frac{\sqrt{3}}{2}r \cdot \frac32 r = \frac{3\sqrt3}{4}r^2$. The area of the triangle minus the area of the purple circle will give us three times the area of the green segment, which we can then use to find $A_\mathrm{green}$:
$$
\begin{align*}
3A_\mathrm{green} &= A_{ABC} - A_\mathrm{purple} \\
3A_\mathrm{green} &= \frac{3\sqrt3}{4}r^2 - \frac14\pi r^2 \\
3A_\mathrm{green} &= \frac{3\sqrt3-\pi}{4}r^2 \\
A_\mathrm{green} &= \frac{3\sqrt3-\pi}{12}r^2. \\
\end{align*}
$$
We can now sum $A_\mathrm{red}$, $A_\mathrm{purple}$, and $A_\mathrm{green}$ to find the total area of the shaded region:
$$
\begin{align*}
A_\mathrm{total} &= A_\mathrm{red}+A_\mathrm{purple}+A_\mathrm{green} \\
&= \left(\frac{\pi}{3}-\frac{\sqrt3}{4}\right)r^2 + \frac14\pi r^2 + \frac{3\sqrt3-\pi}{12}r^2 \\
&= \left( \frac\pi3-\frac{\sqrt{3}}{4} + \frac\pi4 + \frac{\sqrt{3}}{4} - \frac{\pi}{12} \right) r^2 \\
&= \left( \frac\pi3 + \frac\pi4 - \frac{\pi}{12} \right) r^2 \\
A_\mathrm{total} &= \frac\pi2 r^2. \\
\end{align*}
$$
Therefore the total area of the shaded region is half of the area of the larger circle, and thus the area of the shaded region equals that of the unshaded region.