-3

Inspired from this question

Create a mathematic rule, so every integer can be written in only 1 symbol.

Note : white spaces (space, tab, etc) is considered as different symbol

Jamal Senjaya
  • 17,864
  • 2
  • 41
  • 147

1 Answers1

2

$\triangle \to 0$
$\triangle\triangle \to 1$
$\triangle\triangle\triangle \to -1$
$\triangle\triangle\triangle\triangle \to 2$
$\triangle\triangle\triangle\triangle\triangle \to -2$
$\triangle\triangle\triangle\triangle\triangle\triangle \to 3$
$\triangle\triangle\triangle\triangle\triangle\triangle\triangle \to -3$
$\triangle\triangle\triangle\triangle\triangle\triangle\triangle\triangle \to 4$
$\triangle\triangle\triangle\triangle\triangle\triangle\triangle\triangle\triangle \to -4$
...

Deusovi
  • 146,248
  • 16
  • 519
  • 609
  • How it works: $△$ is $0$. For other integers, if $n_△ mod 2=0$, then $n=n_△/2$. If $n_△ mod 2=1$, then the result is $n=-\lfloor n_△/2\rfloor$. – EKons Sep 12 '16 at 05:04
  • @ΈρικΚωνσταντόπουλος Or $n=(-1)^{n_△}\lfloor n_△/2\rfloor$, if you are lazy :) – Lynn Sep 12 '16 at 12:19