1 1
1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
#1.   You are here
1111111111111111111111111111111
111 111
111 1111111111111111111 111111111111111111111111111
111 111 111 111 111
111 111 1111111 111 111 111111111111111 111
111 111 111 111 111 111 111 111
111 1111111 111 111 111 111 111 111 111
111 111 111 111 111 111 111
1111111111111111111 111 111111111111111 111 111
111 111 111
111111111111111111111111111111111111111 111
111 111
111 111111111111111111111111111111111111111
111 111
111 111 111111111111111
111 111 111 111
111 111 111 111 111
111 111 111 111
111 111111111111111 111
111 111
111111111111111111111111111
#2.  
Through the labyrinth we wind
1ooo11ooo1
111ooooo1 1oo111o
1 oo1111 1 1
o1 o1 1 1
o1 1 1 1
o1 1 1 1
1 1 1 1
1 1 11ooo1oo1o111oo
1ooo11o1 oooo1
o1 1111 ooo1111
1111 1111111
1 1111
1111
o1
o1
o1111 o1
oo1 o1 o1
o1 1111
o1 ooo1oo111o
1 ooo1 o1
1111 1
1
#3.  
A rose is a rose is a rose
1
1 1
1o1o1
1 1 1 1
1 1o1o1o1o1 1
1 1 1 1 1 1 1 1
1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1
1 1 1 1 1 1 1 1
1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1o1o1o1o1 1o1o1o1o1o1o1o1o1
1 1 1 1 1 1 1 1
1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1 1o1o1o1o1o1o1o1o1o1o1o1o1
1 1 1 1 1 1 1 1
1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1
#4.  
$\sf \small O \scriptsize NE$ders of the ancient world
Obviously (?) the
$\sf\scriptsize ZERO$-and$\small/$or-$\sf\scriptsize ONE$ders
here represent a pattern of mathematical constructs.
o?1?o?1?
1? o?
1?
o?
1?
o?
1?
#5.   What picture could be fifth, but not at other #s here? Why?
1o111111ooooo
oooooo1o11111ooooo
oooooooooooo1o1111ooooo
oooooooooooooooooo1o111ooooo
oooooooooooooooooooooooo1o11ooooo
oooooooooooooooooooooooooooooo1o1ooooo
ooooooooooooooooooooooooooooooooooo11o1oooo
oooooooooooooooooooooooooooooooooooooooo111o1ooo
ooooooooooooooooooooooooooooooooooooooooooooo1111o1oo
oooooooooooooooooooooooooooooooooooooooooooooooooo11111o1o
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo111111o1
#6.  
One for the road
The answer can be pictured in infinitely many ways.
The ?-shaped placeholder presently at #5
is meant to be replaced.
Only numbers composed of o zeros
and$\small/$or 1 ones are pertinent.
Two-dimensional shapes and surrounding words
are just gratuitous embellishments.
If you’re getting nowhere after considering all this,
why not actually go nowhere, to
$\sf \small N \scriptsize ONE$derland,
for comparison?
1counts in each: 66, 476, 107, 231, and 6. – Deusovi Jul 09 '16 at 08:030counts are 0, 0, 60, 102. And totals in each are 66, 476, 167, 333. So ignoring the first two, perhaps something with 6661s and0s. Though I think it would be more fun to just answer2. Or the way the totals work out,3. – aroth Jul 09 '16 at 13:37rebus. great artwork. Now, about the 5th, do we need to draw it only out of 0 and 1 ? – ABcDexter Jul 09 '16 at 19:20oand1are the only pieces in play. (To have the pictures behave rebusly would have been a good idea, but they are merely whimsical shapes allowed by the underlying rule in question. A valid answer doesn't actually have to resemble anything.) – humn Jul 09 '16 at 19:38Welcome to $ \sf \small O \scriptsize NE $derland– humn Jul 10 '16 at 11:48