8

Create the numbers from 1 to 20

Using

  • $\pi$
  • Normal arithmetic operation $+ - * /$
  • Square root $\surd$
  • Exponential $(X^Y)$
  • Negative() minus sign $-$
  • Floor() function, express between $[ x ]$

    $[ 3.0 ]$ and $[ 3.9 ] = 3$
    $[-3.1 ]$ and $[-3.9 ] = -4$

Forbidden
  • Factorial
  • Log
  • More than four $\pi$

Doing the 20 numbers takes time but is easy.
Now the challenge is to create all 20 numbers using the minimal number of $\pi$.

For example:

1 = $\pi$ /$\pi$ use two $\pi$
1 = [ $\surd\pi$ ] only need one $\pi$

2 = $[ \surd\pi ] + [ \surd\pi ]$ use two $\pi$
2 = $-[ - \surd\pi ]$ use one $\pi$

I give you an initial target of 50 $\pi$ for all 20 numbers. But I know can be lower.

Rand al'Thor
  • 116,845
  • 28
  • 322
  • 627

3 Answers3

10

I did it with 43.

43 = $⌊\pi⌋^{⌊\pi⌋}-⌊-\pi⌋*-⌊-\pi⌋$

There might be a smaller number that this could be done with, but I got lazy after 13. I also don't use anything other than $\surd$, $\pi$, $⌊$ $⌋$, $-$, $+$, $*$.

Exponents and parentheses are for suckers!
(or maybe for people that get a lower score than me)

1 = $⌊\surd\pi⌋$
2 = $-⌊-\surd\pi⌋$
3 = $⌊\pi⌋$
4 = $-⌊-\pi⌋$
5 = $⌊\pi⌋-⌊-\surd\pi⌋$
6 = $⌊\pi+\pi⌋$
7 = $⌊\pi⌋-⌊-\pi⌋$
8 = $-⌊-\pi⌋-⌊-\pi⌋$
9 = $⌊\pi * \pi⌋$
10 = $-⌊-\pi * \pi⌋$
11 = $-⌊-\pi * \pi⌋ + ⌊\surd\pi⌋$
12 = $⌊\pi * -⌊-\pi⌋⌋$
13 = $-⌊-\pi * -⌊-\pi⌋⌋$
14 = $-⌊-\surd\pi⌋ * ⌊⌊\pi⌋ - ⌊-\pi⌋⌋$
15 = $-⌊-\pi⌋ * -⌊-\pi⌋ - ⌊\surd\pi⌋$
16 = $-⌊-\pi⌋ * -⌊-\pi⌋$
17 = $-⌊-\pi⌋ * -⌊-\pi⌋ + ⌊\surd\pi⌋$
18 = $-⌊-\pi⌋ * -⌊-\pi⌋ - ⌊-\surd\pi⌋$
19 = $-⌊-\pi⌋ * -⌊-\pi⌋ + ⌊\pi⌋$
20 = $-⌊-\pi⌋ * -⌊-\pi⌋ - ⌊-\pi⌋$

Ian MacDonald
  • 12,806
  • 1
  • 33
  • 63
6

I managed to do it in 42 $\pi$s.

  • 1: $\lfloor\sqrt\pi\rfloor$
  • 2: $\sqrt{-\lfloor-\pi\rfloor}$
  • 3: $\lfloor\pi\rfloor$
  • 4: $-\lfloor-\pi\rfloor$
  • 5: $\pi-\lfloor-\sqrt\pi\rfloor$
  • 6: $\lfloor\pi\rfloor+\lfloor\pi\rfloor$
  • 7: $\lfloor\pi\rfloor-\lfloor-\pi\rfloor$
  • 8: $-\lfloor-\pi\rfloor-\lfloor-\pi\rfloor$
  • 9: $\lfloor\pi\rfloor\times\lfloor\pi\rfloor$
  • 10: $-\lfloor-\pi\times\pi\rfloor$
  • 11: $\lfloor\lfloor-\lfloor-\pi\rfloor\rfloor^{\sqrt\pi}\rfloor$
  • 12: $-\lfloor-\pi\rfloor\times\lfloor\pi\rfloor$
  • 13: $\lfloor-\lfloor-\pi\rfloor\times\pi\rfloor$
  • 14: $-\lfloor-\pi\times\pi\rfloor-\lfloor-\pi\rfloor$
  • 15: $-\lfloor-\pi\rfloor\times\lfloor\pi\rfloor+\lfloor\pi\rfloor$
  • 16: $\lfloor-\pi\rfloor\times\lfloor-\pi\rfloor$
  • 17: $\lfloor-\lfloor-\pi\rfloor\times\pi\rfloor-\lfloor-\pi\rfloor$
  • 18: $\sqrt{-\lfloor-\pi\rfloor}\times\lfloor\pi\rfloor\times\lfloor\pi\rfloor$
  • 19: $-\lfloor-\sqrt{-\lfloor-\pi\rfloor}\times\pi\times\lfloor\pi\rfloor\rfloor$
  • 20: $\lfloor\pi^\pi/\sqrt\pi\rfloor$
GOTO 0
  • 13,549
  • 6
  • 47
  • 92
4

OK, so I got 42

Most of my answers are similar to Ian MacDonald's with the exception of 11 where I was a "sucker" and used an exponent...

1 = $ ⌊√π⌋ $
2 = $√(−⌊−π⌋)$
3 = $⌊π⌋$
4 = $−⌊−π⌋$
5 = $⌊π*√π⌋$
6 = $⌊π⌋+⌊π⌋$
7 = $⌊π⌋−⌊−π⌋$
8 = $−⌊−π⌋−⌊−π⌋$
9 = $⌊π⌋∗⌊π⌋$
10 = $−⌊−π∗π⌋$
11 = $⌊(-⌊-π⌋)^{√π}⌋$
12 = $-⌊π⌋∗⌊−π⌋$
13 = $−⌊−π∗−⌊−π⌋⌋$
14 = $−⌊−√π⌋∗⌊⌊π⌋−⌊−π⌋⌋$
15 = $⌊−π⌋∗⌊−π⌋−⌊√π⌋$
16 = $⌊−π⌋∗⌊−π⌋$
17 = $⌊−π⌋∗⌊−π⌋+⌊√π⌋$
18 = $⌊−π⌋∗⌊−π⌋−⌊−√π⌋$
19 = $⌊−π⌋∗⌊−π⌋+⌊π⌋$
20 = $⌊−π⌋∗⌊−π⌋−⌊−π⌋$

Warlord 099
  • 1,784
  • 1
  • 11
  • 13