For n=9, there're four groups of different solutions with 14 circles:
One candidate is infinity point + (0,0), (1,0), (0.5, 1.3228756555322952952508078768196302129), (-0.25,0.66143782776614764762540393840981510643)
(2.5,1.3228756555322952952508078768196302129), (-1,0), (-1.5,1.3228756555322952952508078768196302129), (-0.5,-1.3228756555322952952508078768196302129)
where 1.3228756555322952952508078768196302129 is $\frac{\sqrt{7}}2$

All available solutions could be got from equations:
sd8/f484.7.out
_[1]=4d2-7
_[2]=k+1/2
_[3]=c-1/2
_[4]=b+d
_[5]=a-3/2
sd8/f4041.7.out
_[1]=4d-1
_[2]=k+1/2
_[3]=c-1/2
_[4]=b+d
_[5]=a-3/4
or
_[1]=4d+1
_[2]=k+1/2
_[3]=c-1/2
_[4]=b+d
_[5]=a-3/4
sd8/f13492.7.out
_[1]=16d2-7
_[2]=k+1/2
_[3]=c-1/4
_[4]=b+d
_[5]=a-1/4
sd8/f12577.7.out
_[1]=c4k2+2c2d2k2+d4k2+c4k+2c2d2k+d4k-2c3k2-2cd2k2-c2k3-d2k3+c4+2c2d2+d4-2c3k-2cd2k-2c2k2-2d2k2+2ck3-2c3-2cd2-c2k-d2k+4ck2+c2+d2+2ck
_[2]=-2c3dk4-2cd3k4-c2dk5+4bd2k5-d3k5+bk7-4c3dk3-4cd3k3+8bd2k4-4d3k4+2cdk5+2bk6-6c3dk2-6cd3k2+12bd2k3-8d3k3+6cdk4+bk5-dk5-4c3dk-4cd3k+3c2dk2+8bd2k2-9d3k2+10cdk3-dk4-2c3d-2cd3+2c2dk+4bd2k-6d3k+8cdk2+2c2d-2d3+4cdk
_[3]=2c3dk3+2cd3k3+c2dk4-4bd2k4+d3k4-bk6+4c3dk2+4cd3k2-8bd2k3+4d3k3-2cdk4-2bk5+4c3dk+4cd3k-c2dk2-8bd2k2+7d3k2-6cdk3+dk4+2c3d+2cd3-2c2dk-4bd2k+6d3k-8cdk2+bk3+dk3-c2d+3d3+2bck-4cdk-2bk2-dk2-2cd-2bk+2d
_[4]=c4dk+2c2d3k+d5k+2bc3k2+2bcd2k2-bc2k3-bd2k3+bc4+2bc2d2+bd4-4c3dk-4cd3k-4bc2k2-c2dk2-d3k2+bk4-2bc3-2bcd2-bc2k+4c2dk-bd2k+2bck2+2cdk2+bk3+bc2+bd2+2bck-bk2-dk2-bk+d
_[5]=c3k2+cd2k2+c2k3-2bdk3+d2k3+ak4+c3k+cd2k-2bdk2+2d2k2+ak3-2ck3-k4+c3+cd2-2bdk+2d2k-3ck2-k3-c2+d2-2ck
_[6]=c2dk+d3k+2bck2-bk3+bc2+bd2-2cdk-2bk2-bc+ad-bk+dk
_[7]=ack-c2k+bdk-d2k-ak2-c2-d2-ak+ck+k2+c+k
_[8]=c3k+cd2k+c2k2-2bdk2+d2k2+ak3+ac2+ad2-c2k+d2k-2ck2-k3-ac-bd-ak-ck+k
_[9]=a2k+b2k-c2-d2-2ak+2c+k
_[10]=a2c+b2c-ac2+c3-ad2+cd2+c2k-2bdk+d2k+ak2-a2-b2+ac-2c2+bd-ak-2ck-k2+c+k+1
(I have thought there should be no real roots of the last equation, but in fact we could find infinity number of real roots).
For any solution of the above equations,
We need to find a real projective transformation to transform complex point (a+bi, c+di) to infinity points (1:i:0),(1:-i:0).
The projective transformation will transform 8 points
(0,0), (1,0),(0,1),((1+k)/k,1),(1,k+1), (1:0:0),(1:k:0),(0:1:0) into a result (Add an extra infinity point)
For example, if k=-1/2;a=1,b=1,c=3/10,d=-1/10; The 8 points could be projected to
(0,0),(1,0),(1,2),(9/5,12/5),(0,3),(-3,0),(3/2,3/2),(3/5,6/5)
I have verified that for n=9, there're at most 14 circles and for n=10, there're at most 22 circles too.