Hi , My instructor solved this problem using a circular elemental strip of thickness 'dr'. He told me we get only shear stress in horizontal layers of fluid. He used Newton's law of viscosity to get the value of shear stress at top face of plate. The Newton's law of viscosity is only applied between two plates where there is velocity gradient. But we are also observing linear profile of velocity on the top face of plate. Here my doubt is why can't we apply Newton's law of viscosity for this circular strip? That is, in a circular strip we have a number of layers of fluid with different velocities. So there is velocity gradient between them. But shear stress between is not calculated between layers? Is there no relative motion between those cylinderical fluid layers? What goes wrong in assuming it? Also this problem is solved example in other textbook on fluid mechanics. In that example too they didn't consider shear stress between cylinderical fluid surfaces. I am studying this course for first time. Can anyone please explain elaborately.. Thank you
Edit: I am adding images of how i solved it . So it will avoid any confusion present in my text
And the below image is the actual doubt


