How can we say that $$\text{Power} = \mathbf{F}\cdot \mathbf{v}$$
We know that small work done by a force $\mathbf{F}$ to displace an object by '$\mathbf{x}$' is
$$W = \mathbf{F}\cdot \mathbf{x}$$
So derivating wrt time, we get
$$\begin{align} P=\dfrac{dW}{dt}&=\frac{d\mathbf{F}}{dt}\cdot \mathbf{x}+\mathbf{F}\cdot\dfrac{d\mathbf{x}}{dt}\\ &=\frac{d\mathbf{F}}{dt}\cdot \mathbf{x}+\mathbf{F}\cdot\mathbf{v} \end{align}$$
We get this wrong result. How actually can we show $P=\mathbf{F}\cdot\mathbf{v}$ ?
Edit
Actually I know that total work $W$ is $\int \mathbf{F}\cdot d\mathbf{x}$.
Infinitesimal work done by $\mathbf{F}$ to displace body by $d\mathbf{x}$ will be $dW = \mathbf{F}\cdot d\mathbf{x}$, so dividing by $dt$ on both sides gives $$P =\dfrac{dW}{dt} = \mathbf{F}\cdot \frac{d\mathbf{x}}{dt}$$
But I wanted a proper proof not involving differentials!