1

How do you solve a proof given ¬A ∨ ¬(¬B ∧ (¬A ∨ B)) without any premises?

keever
  • 11
  • 1

1 Answers1

1

Negate the conclusion and demonstrate a contradiction:

{1}       1.   ¬(¬A ∨ ¬(¬B ∧ (¬A ∨ B)))      Assum.
{2}       2.   ¬A                            Assum.
{2}       3.   ¬A ∨ ¬(¬B ∧ (¬A ∨ B))         2 ∨I
{1,2}     4.   ⊥                             1,3 ∧I
{1}       5.   ¬¬A                           2,4 RAA
{1}       6.   A                             5 DNE
{7}       7.   ¬(¬B ∧ (¬A ∨ B))              Assum.
{7}       8.   ¬A ∨ ¬(¬B ∧ (¬A ∨ B))         7 ∨I
{1,7}     9.   ⊥                             1,8 ∧I
{1}       10.  ¬¬(¬B ∧ (¬A ∨ B))             7,9 RAA
{1}       11.  ¬B ∧ (¬A ∨ B)                 10 DNE
{1}       12.  ¬B                            11 ∧E
{1}       13.  ¬A ∨ B                        11 ∧E
{14}      14.  ¬A                            Assum. (13 1st Disj.)
{1,14}    15.  ⊥                             6,14 ∧I (13 1st Concl.)
{16}      16.  B                             Assum. (13 2nd Disj.)
{1,16}    17.  ⊥                             12,16 ∧I
{1}       18.  ⊥                             13,14,15,16,17 EE
-         19.  ¬A ∨ ¬(¬B ∧ (¬A ∨ B))         1,18 RAA