I have been wondering if my code is wrong or something. But why can't I get the optimality with only 16 nodes (I have clustered it so the max now becomes 16 from a total of 54 nodes)? My model was based on VRP Time Windows by Paschos 2014. I've tried it by using Lingo and Gurobi. The formulation is this: $$ \text { Minimize } \sum_{k=1}^{m} \sum_{\left(v_{i}, v_{j}\right) \in \mathcal{A}} c_{i j} x_{i j k} $$
Constraint: $$ \begin{array}{ll} \sum_{k=1}^{m} \sum_{v_{j} \in \mathcal{V}} x_{i j k}=1 & \begin{array}{r} k=1\left(v_{i}, v_{j}\right) \in \mathcal{A} \\ v_{i} \in \mathcal{V} \backslash\left\{v_{0}\right\} \end{array} \\ \sum_{v_{i} \in \mathcal{V}} x_{i \ell k}=\sum_{v_{j} \in \mathcal{V}} x_{\ell j k} & v_{\ell} \in \mathcal{V} \backslash\left\{v_{0}\right\}, 1 \leqslant k \leqslant m \\ \sum_{v_{j} \in \mathcal{V} \backslash\left\{v_{0}\right\}} x_{0 j k}=1 & 1 \leqslant k \leqslant m \\ \sum_{v_{i} \in \mathcal{V} \backslash\left\{v_{0}\right\}} x_{i 0 k}=1 & 1 \leqslant k \leqslant m \\ \sum_{v_{i} \in \mathcal{V} \backslash\left\{v_{0}\right\}} \sum_{v_{j} \in \mathcal{V}} q_{i} x_{i j k} \leqslant Q & 1 \leqslant k \leqslant m \end{array} $$
$$ \begin{aligned} &a_{i} \sum_{v_{j} \in \mathcal{V}} x_{i j k} \leqslant u_{i k} \leqslant b_{i} \sum_{v_{j} \in \mathcal{V}} x_{i j k}, \quad v_{i} \in \mathcal{V}, 1 \leqslant k \leqslant m \\ &u_{i k}+s_{i}+t_{i j}-u_{j k} \leqslant T\left(1-x_{i j k}\right), \quad\left(v_{i}, v_{j}\right) \in \mathcal{A}, 1 \leqslant k \leqslant m \\ &u_{i k} \geqslant 0, \quad v_{i} \in \mathcal{V}, 1 \leqslant k \leqslant m \end{aligned} $$
The weird thing is when I tried to solve it with 10 nodes, the lingo solver was able to return the optimal solution in under 1 minute. But when I tried with real data, even for 10 hours running, the solver is still running.
EDIT:
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (win64)
Thread count: 2 physical cores, 4 logical processors, using up to 4 threads
Optimize a model with 168 rows, 768 columns and 2976 nonzeros
Model fingerprint: 0x460da4ce
Model has 630 general constraints
Variable types: 48 continuous, 720 integer (720 binary)
Coefficient statistics:
Matrix range [1e+00, 8e+01]
Objective range [1e+00, 5e+01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+03]
GenCon rhs range [1e+01, 4e+01]
GenCon coe range [1e+00, 1e+00]
Presolve added 1272 rows and 210 columns
Presolve time: 0.17s
Presolved: 1440 rows, 978 columns, 11136 nonzeros
Variable types: 258 continuous, 720 integer (720 binary)
Root relaxation: objective 2.700000e+01, 67 iterations, 0.03 seconds (0.00 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 27.00000 0 30 - 27.00000 - - 0s
0 0 30.02381 0 37 - 30.02381 - - 0s
0 0 35.00000 0 36 - 35.00000 - - 0s
0 0 43.00000 0 31 - 43.00000 - - 0s
H 0 0 281.0000000 43.00000 84.7% - 0s
0 0 43.00000 0 31 281.00000 43.00000 84.7% - 0s
0 0 43.00000 0 31 281.00000 43.00000 84.7% - 1s
0 0 43.00000 0 30 281.00000 43.00000 84.7% - 1s
0 0 43.00000 0 30 281.00000 43.00000 84.7% - 1s
0 0 43.00000 0 30 281.00000 43.00000 84.7% - 1s
0 2 43.00000 0 26 281.00000 43.00000 84.7% - 1s
H 29 35 198.0000000 43.00000 78.3% 21.5 1s
H 88 99 168.0000000 43.00000 74.4% 14.0 1s
- 119 123 50 127.0000000 43.00000 66.1% 12.4 1s
H 456 391 125.0000000 43.00000 65.6% 10.3 2s
H 463 379 119.0000000 43.00000 63.9% 10.4 2s
817 658 43.15451 22 27 119.00000 43.00000 63.9% 15.9 5s
H 1006 719 118.0000000 43.00000 63.6% 16.5 5s
H 1038 692 114.0000000 43.00000 62.3% 16.6 5s
H 1073 678 113.0000000 43.00000 61.9% 16.6 6s
H 1705 899 111.0000000 43.00000 61.3% 16.3 7s
3202 1880 84.97293 66 13 111.00000 43.48152 60.8% 15.5 10s
8845 6167 93.21239 72 10 111.00000 44.28152 60.1% 15.6 15s
14423 9889 infeasible 64 111.00000 45.12155 59.3% 14.7 20s
19007 13198 51.85990 38 12 111.00000 45.74524 58.8% 14.4 25s
20856 14247 67.91148 60 30 111.00000 46.00000 58.6% 14.5 31s
20886 14267 86.76100 43 54 111.00000 46.00000 58.6% 14.4 35s
20987 14336 46.00000 36 33 111.00000 46.00000 58.6% 14.8 40s
22171 14926 100.20962 115 23 111.00000 46.00000 58.6% 15.1 45s
26640 16889 infeasible 69 111.00000 47.53714 57.2% 15.0 50s
32818 19229 69.72771 59 26 111.00000 51.16970 53.9% 14.8 55s
38186 21010 59.97461 45 34 111.00000 53.16667 52.1% 14.9 60s
42489 22265 90.33333 49 14 111.00000 54.63747 50.8% 14.9 65s
47836 24148 89.49744 77 31 111.00000 56.00000 49.5% 14.9 70s
53826 25927 65.11477 60 34 111.00000 56.79788 48.8% 14.8 75s
59884 27894 78.77307 154 23 111.00000 57.41955 48.3% 14.9 80s
65719 30032 101.20672 60 24 111.00000 58.09387 47.7% 14.9 85s
71150 33633 infeasible 115 111.00000 58.72779 47.1% 14.9 90s
74887 36114 64.05556 52 27 111.00000 59.09387 46.8% 14.9 95s
79892 39307 109.30875 49 24 111.00000 59.51082 46.4% 14.9 100s
83720 41742 71.64684 51 22 111.00000 59.91729 46.0% 15.0 105s
88446 44919 98.25571 45 10 111.00000 60.10905 45.8% 15.0 110s
93592 48237 85.96847 48 24 111.00000 60.43274 45.6% 15.1 115s
98541 51522 64.60322 51 25 111.00000 60.72943 45.3% 15.1 120s
102845 54267 99.00000 65 16 111.00000 60.95160 45.1% 15.1 125s
107394 57673 69.52727 64 22 111.00000 61.00000 45.0% 15.2 130s
112444 61028 80.75000 78 18 111.00000 61.12951 44.9% 15.2 135s
117523 64288 67.74127 75 16 111.00000 61.26834 44.8% 15.3 140s
122741 67689 63.32275 65 19 111.00000 61.45337 44.6% 15.3 145s
127607 70950 101.00000 49 12 111.00000 61.57306 44.5% 15.4 150s
132756 74210 65.47593 42 31 111.00000 61.78555 44.3% 15.4 155s
136990 76979 92.93333 77 15 111.00000 61.93750 44.2% 15.4 160s
142582 80382 104.00000 76 17 111.00000 62.00000 44.1% 15.4 165s
147283 83875 109.09497 64 19 111.00000 62.00000 44.1% 15.5 170s
152753 87143 103.55460 60 10 111.00000 62.12951 44.0% 15.5 175s
158126 90549 93.94203 55 19 111.00000 62.23102 43.9% 15.5 180s
163038 93669 cutoff 60 111.00000 62.32400 43.9% 15.6 185s
166698 95951 77.50173 77 15 111.00000 62.40379 43.8% 15.6 190s
171727 98819 105.61448 56 22 111.00000 62.52864 43.7% 15.6 195s
176952 102393 infeasible 99 111.00000 62.64973 43.6% 15.6 200s
181955 105410 87.20043 45 11 111.00000 62.75701 43.5% 15.6 205s
187145 108539 87.80647 75 35 111.00000 62.89160 43.3% 15.7 210s
192246 111837 infeasible 79 111.00000 62.99708 43.2% 15.7 215s
197389 115062 70.75900 85 13 111.00000 63.00000 43.2% 15.7 220s
201353 117893 93.06245 75 31 111.00000 63.02439 43.2% 15.7 225s
206195 120822 63.47779 54 24 111.00000 63.09691 43.2% 15.7 230s
210899 123760 105.00546 61 14 111.00000 63.14964 43.1% 15.7 235s
216382 127092 105.00000 74 14 111.00000 63.22222 43.0% 15.7 240s
222038 130637 90.00000 68 12 111.00000 63.32452 43.0% 15.7 245s
226492 133185 90.91646 44 13 111.00000 63.37571 42.9% 15.7 250s
230755 136152 64.69033 64 20 111.00000 63.41868 42.9% 15.7 255s
235252 138714 63.86574 57 31 111.00000 63.49554 42.8% 15.8 260s
240283 141816 infeasible 50 111.00000 63.55502 42.7% 15.7 265s
246089 145454 79.49498 48 18 111.00000 63.64156 42.7% 15.7 270s
250670 148171 79.08612 52 12 111.00000 63.70720 42.6% 15.7 275s
255030 150974 80.73087 37 15 111.00000 63.75478 42.6% 15.8 280s
258930 153198 94.81954 45 16 111.00000 63.79969 42.5% 15.8 285s
263816 156010 76.15049 45 25 111.00000 63.88839 42.4% 15.8 290s
268782 158824 93.50000 49 8 111.00000 63.95633 42.4% 15.8 295s
271310 160524 84.00000 52 15 111.00000 64.00000 42.3% 15.8 300s
274848 162583 66.86667 34 27 111.00000 64.00000 42.3% 15.8 305s
278496 165062 infeasible 87 111.00000 64.00000 42.3% 15.8 310s
281970 167381 cutoff 59 111.00000 64.01453 42.3% 15.8 315s
285890 169888 97.42763 61 20 111.00000 64.06042 42.3% 15.9 320s