I am applying Benders decomposition and the dual is unbounded. I need to find the extreme rays to proceed, but I am not sure how to do that. Following is an example problem, can someone explain how the extreme rays (3,2) (1,3) were found in this example (graphically or simplex method)? I know how to find the extreme points, but don't know how to find the extreme rays.
Problem
$$U=\{u\in\mathbb{R}_+^2 : 4u_1+2u_2\geq2, -2u_1+3u_2\geq-3, 3u_1-u_2\geq1\}$$ has extreme points $(\frac25,\frac15)^T,(\frac12,0)^T,(\frac32,0)^T$ and extreme rays $(3,2)^T,(1,3)^T$ giving the extended formulation :
$$U=\{u\in\mathbb{R}^2 :u=\begin{pmatrix}\frac25 \\\frac15 \\\end{pmatrix}\lambda_1+\begin{pmatrix}\frac12 \\0 \\\end{pmatrix}\lambda_2+\begin{pmatrix}\frac32 \\0 \\\end{pmatrix}\lambda_3+\begin{pmatrix}3\\2\\\end{pmatrix}\mu_1+\begin{pmatrix}1\\3\\\end{pmatrix}\mu_2, \\ \ \\ \lambda_1+\lambda_2+\lambda_3=1, (\lambda,\mu)\in\mathbb{R}_+^3\times\mathbb{R}_+^2\} \qquad\qquad\qquad\Box$$