By introducing the binary helper variables $z_1,z_2,z_3,w_1,w_2,w_3$, you can use the constraints
$$
\begin{align}
L_y z_1 + c z_2 + (c+1)z_3 &\leq y \leq (c-1)z_1 + c z_2 + U_y z_3, \tag{1} \\
L_x w_1 + k w_2 + (k+1)w_3 &\leq x \leq (k-1)w_1 + k w_2 + U_x w_3, \tag{2}\\
z_1 + z_2 + z_3 &= 1, \tag{3}\\
w_1 + w_2 + w_3 &= 1, \tag{4}\\
z_1 + z_3 &\leq w_1 + w_3 \tag{5}.
\end{align}
$$
Explanation: The constraint $x = k \implies y = c$ is equivalent to the contraposition $y \neq c \implies x \neq k$. Hence, we want to formulate
$$
y \leq c - 1 \;\vee\; y \geq c+1 \implies x \leq k-1 \; \vee \; x \geq k+1. \tag{*}
$$
Then, (1) and (2) model the constraints
$$
\begin{align}
z_1 = 1 &\implies y \leq c - 1, \\
z_2 = 1 &\implies y = c, \\
z_3 = 1 &\implies y \geq c + 1, \\
w_1 = 1 &\implies x \leq k - 1, \\
w_2 = 1 &\implies x = k, \\
w_3 = 1 &\implies x \geq k + 1, \\
\end{align}
$$
while (3) and (4) guarantee that only one of the three cases for $x$ and $y$ can appear. Finally, (5) expresses constraint (*) by means of the binary helper variables.
cplex.IfThen(cplex.Eq(x, k), cplex.Eq(y, c));– alamaranka Sep 06 '21 at 10:29